Spaces:
Sleeping
Sleeping
themeetjani
commited on
Commit
•
253fdb8
1
Parent(s):
711f46b
Update pages/Auto_Score_Generation.py
Browse files- pages/Auto_Score_Generation.py +42 -10
pages/Auto_Score_Generation.py
CHANGED
@@ -1,14 +1,46 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
st.write("# Auto Score Generation! 👋")
|
9 |
|
10 |
|
11 |
-
|
12 |
-
""
|
13 |
-
|
14 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
+
import openai
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.preprocessing import LabelEncoder
|
6 |
+
import numpy as np
|
7 |
+
def gpt4_score(m_answer, s_answer):
|
8 |
+
response = openai.ChatCompletion.create(
|
9 |
+
model="gpt-4",
|
10 |
+
messages=[
|
11 |
+
{
|
12 |
+
"role": "system",
|
13 |
+
"content": "You are UPSC answers evaluater. You will be given model answer and student answer. Evaluate it by comparing with the model answer. \n<<REMEMBER>>\nIt is 10 marks question. Student can recieve maximum 5 marks. Give marks in the range of 0.25. (ex. 0,0.25,0.5...)\nThere are 3 parts in the answer. Introduction (1 marks), body (3 marks) and conclusion (1 marks). If the student answer and model answer is not relevant then give 0 marks.\ngive output in json form. Give output in this format {\"intro\":,\"body\":,\"con\":,\"total\":}\n<<OUTPUT>>\n"
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"role": "assistant",
|
17 |
+
"content": f"Model answer: {m_answer}"},
|
18 |
+
{
|
19 |
+
"role": "user",
|
20 |
+
"content": f"Student answer: {s_answer}"}
|
21 |
+
],
|
22 |
+
temperature=0,
|
23 |
+
max_tokens=701,
|
24 |
+
top_p=1,
|
25 |
+
frequency_penalty=0,
|
26 |
+
presence_penalty=0
|
27 |
+
)
|
28 |
+
return json.loads(response.choices[0].message.content)
|
29 |
st.write("# Auto Score Generation! 👋")
|
30 |
|
31 |
|
32 |
+
if 'score' not in session_state:
|
33 |
+
session_state['score']= ""
|
34 |
+
|
35 |
+
st.title("Core Risk Category Classifier")
|
36 |
+
text1= st.text_area(label= "Please write the Model Answer bellow",
|
37 |
+
placeholder="What does the text say?")
|
38 |
+
text2= st.text_area(label= "Please write the Student Answer bellow",
|
39 |
+
placeholder="What does the text say?")
|
40 |
+
def classify(text1,text2):
|
41 |
+
session_state['topic_class'] = gpt4_score(text1,text2)
|
42 |
+
|
43 |
+
|
44 |
+
st.text_area("result", value=session_state['score'])
|
45 |
+
|
46 |
+
st.button("Classify", on_click=classify, args=[text1,text2])
|