File size: 8,312 Bytes
d3a278d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075b025
 
 
 
d3a278d
 
 
b450589
d3a278d
075b025
 
 
d3a278d
 
 
 
 
 
 
 
 
 
 
 
 
 
075b025
 
 
 
 
 
d3a278d
 
075b025
 
d3a278d
075b025
 
d3a278d
 
075b025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a278d
 
075b025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b450589
d3a278d
075b025
 
 
d3a278d
075b025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a278d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b450589
d3a278d
 
b450589
d3a278d
 
 
 
 
 
 
075b025
d3a278d
b450589
d3a278d
075b025
 
d3a278d
b450589
d3a278d
 
 
 
 
b450589
d3a278d
075b025
 
 
d3a278d
 
 
 
 
 
 
 
075b025
d3a278d
 
 
075b025
 
d3a278d
a1d85fa
b450589
075b025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# Copyright 2022 Tristan Behrens.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3

from fastapi import BackgroundTasks, FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from pydantic import BaseModel
from PIL import Image
import os
import io
import random
import base64
from time import time
from statistics import mean
from collections import OrderedDict
import torch
import wave
from source.logging import create_logger
from source.tokensequence import token_sequence_to_audio, token_sequence_to_image
from source import constants
from transformers import AutoTokenizer, AutoModelForCausalLM

logger = create_logger(__name__)

# Load the auth-token from authtoken.txt.
auth_token = os.getenv("authtoken")

# Loading the model and its tokenizer.
logger.info("Loading tokenizer and model...")
tokenizer = AutoTokenizer.from_pretrained(
    "ai-guru/lakhclean_mmmtrack_4bars_d-2048", use_auth_token=auth_token
)
model = AutoModelForCausalLM.from_pretrained(
    "ai-guru/lakhclean_mmmtrack_4bars_d-2048", use_auth_token=auth_token
)
logger.info("Done.")


# Create the app
logger.info("Creating app...")
app = FastAPI(docs_url=None, redoc_url=None)
app.mount("/static", StaticFiles(directory="static"), name="static")
logger.info("Done.")


class Options(BaseModel):
    music_style: str
    density: str
    temperature: str


class NewTask(BaseModel):
    music_style = "synth"
    density = "medium"
    temperature = "medium"


def get_place_in_queue(task_id):
    queued_tasks = list(
        task
        for task in tasks.values()
        if task["status"] == "queued" or task["status"] == "processing"
    )

    queued_tasks.sort(key=lambda task: task["created_at"])

    queued_task_ids = list(task["task_id"] for task in queued_tasks)

    try:
        return queued_task_ids.index(task_id) + 1
    except:
        return 0


def calculate_eta(task_id):
    total_durations = list(
        task["completed_at"] - task["started_at"]
        for task in tasks.values()
        if "completed_at" in task and task["status"] == "completed"
    )

    initial_place_in_queue = tasks[task_id]["initial_place_in_queue"]

    if len(total_durations):
        eta = initial_place_in_queue * mean(total_durations)
    else:
        eta = initial_place_in_queue * 35

    return round(eta, 1)


def next_task(task_id):
    tasks[task_id]["completed_at"] = time()

    queued_tasks = list(task for task in tasks.values() if task["status"] == "queued")

    if queued_tasks:
        print(
            f"{task_id} {tasks[task_id]['status']}. Task/s remaining: {len(queued_tasks)}"
        )
        process_task(queued_tasks[0]["task_id"])


def process_task(task_id):
    if "processing" in list(task["status"] for task in tasks.values()):
        return

    if tasks[task_id]["last_poll"] and time() - tasks[task_id]["last_poll"] > 30:
        tasks[task_id]["status"] = "abandoned"
        next_task(task_id)

    tasks[task_id]["status"] = "processing"
    tasks[task_id]["started_at"] = time()
    print(f"Processing {task_id}")

    try:
        tasks[task_id]["output"] = compose(
            tasks[task_id]["music_style"],
            tasks[task_id]["density"],
            tasks[task_id]["temperature"],
        )
    except Exception as ex:
        tasks[task_id]["status"] = "failed"
        tasks[task_id]["error"] = repr(ex)
    else:
        tasks[task_id]["status"] = "completed"
    finally:
        next_task(task_id)


def compose(music_style, density, temperature):
    instruments = constants.get_instruments(music_style)
    density = constants.get_density(density)
    temperature = constants.get_temperature(temperature)
    print(f"instruments: {instruments} density: {density} temperature: {temperature}")

    # Generate with the given parameters.
    logger.info(f"Generating token sequence...")
    generated_sequence = generate_sequence(instruments, density, temperature)
    logger.info(f"Generated token sequence: {generated_sequence}")

    # Get the audio data as a array of int16.
    logger.info("Generating audio...")
    sample_rate, audio_data = token_sequence_to_audio(generated_sequence)
    logger.info(f"Done. Audio data: {len(audio_data)}")

    # Encode the audio-data as wave file in memory. Use the wave module.
    audio_data_bytes = io.BytesIO()
    wave_file = wave.open(audio_data_bytes, "wb")
    wave_file.setframerate(sample_rate)
    wave_file.setnchannels(1)
    wave_file.setsampwidth(2)
    wave_file.writeframes(audio_data)
    wave_file.close()

    # Return the audio-data as a base64-encoded string.
    audio_data_bytes.seek(0)
    audio_data_base64 = base64.b64encode(audio_data_bytes.read()).decode("utf-8")
    audio_data_bytes.close()

    # Convert the audio data to an PIL image.
    image = token_sequence_to_image(generated_sequence)

    # Save PIL image to harddrive as PNG.
    logger.debug(f"Saving image to harddrive... {type(image)}")
    image_file_name = "compose.png"
    image.save(image_file_name, "PNG")

    # Save image to virtual file.
    img_io = io.BytesIO()
    image.save(img_io, "PNG", quality=70)
    img_io.seek(0)

    # Return the image as a base64-encoded string.
    image_data_base64 = base64.b64encode(img_io.read()).decode("utf-8")
    img_io.close()

    # Return.
    return {
        "tokens": generated_sequence,
        "audio": "data:audio/wav;base64," + audio_data_base64,
        "image": "data:image/png;base64," + image_data_base64,
        "status": "OK",
    }


def generate_sequence(instruments, density, temperature):
    instruments = instruments[::]
    random.shuffle(instruments)

    generated_ids = tokenizer.encode("PIECE_START", return_tensors="pt")[0]

    for instrument in instruments:
        more_ids = tokenizer.encode(
            f"TRACK_START INST={instrument} DENSITY={density}", return_tensors="pt"
        )[0]
        generated_ids = torch.cat((generated_ids, more_ids))
        generated_ids = generated_ids.unsqueeze(0)

        generated_ids = model.generate(
            generated_ids,
            max_length=2048,
            do_sample=True,
            temperature=temperature,
            eos_token_id=tokenizer.encode("TRACK_END")[0],
        )[0]

    generated_sequence = tokenizer.decode(generated_ids)
    print("GENERATING COMPLETE")
    print(generate_sequence)
    return generated_sequence


tasks = OrderedDict()

# Route for the loading page.
@app.head("/")
@app.route("/")
def index(request):
    return FileResponse(path="static/index.html", media_type="text/html")


@app.post("/task/create")
def create_task(background_tasks: BackgroundTasks, new_task: NewTask):
    created_at = time()

    task_id = f"{str(created_at)}_{new_task.music_style}"

    tasks[task_id] = OrderedDict(
        {
            "task_id": task_id,
            "status": "queued",
            "eta": None,
            "created_at": created_at,
            "started_at": None,
            "completed_at": None,
            "last_poll": None,
            "poll_count": 0,
            "initial_place_in_queue": None,
            "place_in_queue": None,
            "music_style": new_task.music_style,
            "density": new_task.density,
            "temperature": new_task.temperature,
            "output": None,
        }
    )

    tasks[task_id]["initial_place_in_queue"] = get_place_in_queue(task_id)
    tasks[task_id]["eta"] = calculate_eta(task_id)

    background_tasks.add_task(process_task, task_id)

    return tasks[task_id]


@app.get("/task/poll")
def poll_task(task_id: str):
    tasks[task_id]["place_in_queue"] = get_place_in_queue(task_id)
    tasks[task_id]["eta"] = calculate_eta(task_id)
    tasks[task_id]["last_poll"] = time()
    tasks[task_id]["poll_count"] += 1

    return tasks[task_id]