File size: 9,642 Bytes
baffb91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import torch
from transformers import pipeline, AutoImageProcessor, SegformerForSemanticSegmentation
from typing import List
from PIL import Image, ImageDraw, ImageFont, ImageChops, ImageMorph
import numpy as np
import datasets

def find_center_of_non_black_pixels(image):
    # Get image dimensions
    width, height = image.size
    
    # Iterate over the pixels to find the center of the non-black pixels
    total_x = 0
    total_y = 0
    num_non_black_pixels = 0
    top, left, bottom, right = height, width, 0, 0
    for y in range(height):
        for x in range(width):
            pixel = image.getpixel((x, y))
            if pixel != (255, 255, 255):  # Non-black pixel
                total_x += x
                total_y += y
                num_non_black_pixels += 1
                top = min(top, y)
                left = min(left, x)
                bottom = max(bottom, y)
                right = max(right, x)
    
    bbox_width = right - left
    bbox_height = bottom - top
    bbox_size = max(bbox_height, bbox_width)
    # Calculate the center of the non-black pixels
    if num_non_black_pixels == 0:
        return None  # No non-black pixels found
    center_x = total_x // num_non_black_pixels
    center_y = total_y // num_non_black_pixels
    return (center_x, center_y), bbox_size

def create_centered_image(image, center, bbox_size):
    # Get image dimensions
    width, height = image.size
    
    # Calculate the offset to center the non-black pixels in the new image
    offset_x = bbox_size // 2 - center[0]
    offset_y = bbox_size // 2 - center[1]
    
    # Create a new image with the same size as the original image
    new_image = Image.new("RGB", (bbox_size, bbox_size), color=(255, 255, 255))
    
    # Paste the non-black pixels onto the new image
    new_image.paste(image, (offset_x, offset_y))

    return new_image

def ade_palette():
    """ADE20K palette that maps each class to RGB values."""
    return [
        [180, 120, 20],
        [180, 120, 120],
        [6, 230, 230],
        [80, 50, 50],
        [4, 200, 3],
        [120, 120, 80],
        [140, 140, 140],
        [204, 5, 255],
        [230, 230, 230],
        [4, 250, 7],
        [224, 5, 255],
        [235, 255, 7],
        [150, 5, 61],
        [120, 120, 70],
        [8, 255, 51],
        [255, 6, 82],
        [143, 255, 140],
        [204, 255, 4],
        [255, 51, 7],
        [204, 70, 3],
        [0, 102, 200],
        [61, 230, 250],
        [255, 6, 51],
        [11, 102, 255],
        [255, 7, 71],
        [255, 9, 224],
        [9, 7, 230],
        [220, 220, 220],
        [255, 9, 92],
        [112, 9, 255],
        [8, 255, 214],
        [7, 255, 224],
        [255, 184, 6],
        [10, 255, 71],
        [255, 41, 10],
        [7, 255, 255],
        [224, 255, 8],
        [102, 8, 255],
        [255, 61, 6],
        [255, 194, 7],
        [255, 122, 8],
        [0, 255, 20],
        [255, 8, 41],
        [255, 5, 153],
        [6, 51, 255],
        [235, 12, 255],
        [160, 150, 20],
        [0, 163, 255],
        [140, 140, 140],
        [250, 10, 15],
        [20, 255, 0],
        [31, 255, 0],
        [255, 31, 0],
        [255, 224, 0],
        [153, 255, 0],
        [0, 0, 255],
        [255, 71, 0],
        [0, 235, 255],
        [0, 173, 255],
        [31, 0, 255],
        [11, 200, 200],
        [255, 82, 0],
        [0, 255, 245],
        [0, 61, 255],
        [0, 255, 112],
        [0, 255, 133],
        [255, 0, 0],
        [255, 163, 0],
        [255, 102, 0],
        [194, 255, 0],
        [0, 143, 255],
        [51, 255, 0],
        [0, 82, 255],
        [0, 255, 41],
        [0, 255, 173],
        [10, 0, 255],
        [173, 255, 0],
        [0, 255, 153],
        [255, 92, 0],
        [255, 0, 255],
        [255, 0, 245],
        [255, 0, 102],
        [255, 173, 0],
        [255, 0, 20],
        [255, 184, 184],
        [0, 31, 255],
        [0, 255, 61],
        [0, 71, 255],
        [255, 0, 204],
        [0, 255, 194],
        [0, 255, 82],
        [0, 10, 255],
        [0, 112, 255],
        [51, 0, 255],
        [0, 194, 255],
        [0, 122, 255],
        [0, 255, 163],
        [255, 153, 0],
        [0, 255, 10],
        [255, 112, 0],
        [143, 255, 0],
        [82, 0, 255],
        [163, 255, 0],
        [255, 235, 0],
        [8, 184, 170],
        [133, 0, 255],
        [0, 255, 92],
        [184, 0, 255],
        [255, 0, 31],
        [0, 184, 255],
        [0, 214, 255],
        [255, 0, 112],
        [92, 255, 0],
        [0, 224, 255],
        [112, 224, 255],
        [70, 184, 160],
        [163, 0, 255],
        [153, 0, 255],
        [71, 255, 0],
        [255, 0, 163],
        [255, 204, 0],
        [255, 0, 143],
        [0, 255, 235],
        [133, 255, 0],
        [255, 0, 235],
        [245, 0, 255],
        [255, 0, 122],
        [255, 245, 0],
        [10, 190, 212],
        [214, 255, 0],
        [0, 204, 255],
        [20, 0, 255],
        [255, 255, 0],
        [0, 153, 255],
        [0, 41, 255],
        [0, 255, 204],
        [41, 0, 255],
        [41, 255, 0],
        [173, 0, 255],
        [0, 245, 255],
        [71, 0, 255],
        [122, 0, 255],
        [0, 255, 184],
        [0, 92, 255],
        [184, 255, 0],
        [0, 133, 255],
        [255, 214, 0],
        [25, 194, 194],
        [102, 255, 0],
        [92, 0, 255],
    ]

def label_to_color_image(label, colormap):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")

    return colormap[label]

labels_list = []

with open(r'labels.txt', 'r') as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray(ade_palette())
LABEL_NAMES = np.asarray(labels_list)
LABEL_TO_INDEX = {label: i for i, label in enumerate(labels_list)}
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP, colormap)
FONT = ImageFont.truetype("Arial.ttf", 1000)

def lift_black_value(image, lift_amount):
    """

    Increase the black values of an image by a specified amount.

    

    Parameters:

        image (PIL.Image): The image to adjust.

        lift_amount (int): The amount to increase the brightness of the darker pixels.

        

    Returns:

        PIL.Image: The adjusted image with lifted black values.

    """
    # Ensure that we don't go out of the 0-255 range for any pixel value
    def adjust_value(value):
        return min(255, max(0, value + lift_amount))
    
    # Apply the point function to each channel
    return image.point(adjust_value)

torch.set_grad_enabled(False)

DEVICE = 'cuda' if torch.cuda.is_available() else "cpu"
# MIN_AREA_THRESHOLD = 0.01

pipe = pipeline("image-segmentation", model="nvidia/segformer-b5-finetuned-ade-640-640")

def segmentation_inference(

        image_rgb_pil: Image.Image,

        savepath: str

):
    outputs = pipe(image_rgb_pil, points_per_batch=32)
    
    for i, prediction in enumerate(outputs):
        label = prediction['label']
        if (label == "floor") | (label == "wall") | (label == "ceiling"): 
            mask = prediction['mask']

            ## Save mask
            label_savepath = savepath + label + str(i) + '.png'
            fill_image = Image.new("RGB", image_rgb_pil.size, color=(255,255,255))
            cutout_image = Image.composite(image_rgb_pil, fill_image, mask)

            # Crop mask
            center, bbox_size = find_center_of_non_black_pixels(cutout_image)
            if center is not None:
                centered_image = create_centered_image(cutout_image, center, bbox_size)
                centered_image.save(label_savepath)

            ## Inspect masks
            # inverted_mask = ImageChops.invert(mask)
            # mask_adjusted = lift_black_value(inverted_mask, 100)
            # color_index = LABEL_TO_INDEX[label]
            # color = tuple(FULL_COLOR_MAP[color_index][0])
            # fill_image = Image.new("RGB", image_rgb_pil.size, color=color)
            # image_rgb_pil = Image.composite(image_rgb_pil, fill_image, mask_adjusted)

    # Display the final image
    # image_rgb_pil.show()

def online_segmentation_inference(

        image_rgb_pil: Image.Image

):
    outputs = pipe(image_rgb_pil, points_per_batch=32)
    
    # Create an image dictionary
    image_dict = {"image": [], "label":[]}

    for i, prediction in enumerate(outputs):
        label = prediction['label']
        if (label == "floor") | (label == "wall") | (label == "ceiling"): 
            mask = prediction['mask']

            fill_image = Image.new("RGB", image_rgb_pil.size, color=(255,255,255))
            cutout_image = Image.composite(image_rgb_pil, fill_image, mask)

            # Crop mask
            center, bbox_size = find_center_of_non_black_pixels(cutout_image)
            if center is not None:
                centered_image = create_centered_image(cutout_image, center, bbox_size)

                # Add image to image dictionary
                image_dict["image"].append(centered_image)
                image_dict["label"].append(label)

    segmented_ds = datasets.Dataset.from_dict(image_dict).cast_column("image", datasets.Image())
    return segmented_ds