AIAPIendpoints / similarity_inference.py
canadianjosieharrison's picture
Upload 11 files
baffb91 verified
raw
history blame
2.79 kB
from image_helpers import convert_images_to_grayscale, crop_center_largest_contour, fetch_similar
import datasets as ds
import re
import torchvision.transforms as T
from transformers import AutoModel, AutoFeatureExtractor
import torch
import random
def similarity_inference(directory):
convert_images_to_grayscale(directory)
crop_center_largest_contour(directory)
# define processing variables needed for embedding calculation
root_directory = "data/" #"C:/Users/josie/OneDrive - Chalmers/Documents/Speckle hackathon/data/"
model_ckpt = "nateraw/vit-base-beans" ## FIND DIFFERENT MODEL
candidate_subset_emb = ds.load_dataset("canadianjosieharrison/2024hackathonembeddingdb")['train']
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
model = AutoModel.from_pretrained(model_ckpt)
transformation_chain = T.Compose(
[
# We first resize the input image to 256x256 and then we take center crop.
T.Resize(int((256 / 224) * extractor.size["height"])),
T.CenterCrop(extractor.size["height"]),
T.ToTensor(),
T.Normalize(mean=extractor.image_mean, std=extractor.image_std),
])
device = "cuda" if torch.cuda.is_available() else "cpu"
pt_directory = root_directory + "embedding_db.pt" #"materials/embedding_db.pt"
all_candidate_embeddings = torch.load(pt_directory, map_location=device, weights_only=True)
candidate_ids = []
for id in range(len(candidate_subset_emb)):
# Create a unique indentifier.
entry = str(id) + "_" + str(random.random()).split('.')[1]
candidate_ids.append(entry)
# load all components
test_ds = ds.load_dataset("imagefolder", data_dir=directory)
label_filenames = ds.load_dataset("imagefolder", data_dir=directory).cast_column("image", ds.Image(decode=False))
# loop through each component and return top 3 most similar
match_dict = {"ceiling": [], "floor": [], "wall": []}
for i, each_component in enumerate(test_ds['train']):
query_image = each_component["image"]
component_label = label_filenames['train'][i]['image']['path'].split('_')[-1]
print(component_label)
match = re.search(r"([a-zA-Z]+)\d*\.png", component_label)
component_label = match.group(1)
sim_ids = fetch_similar(query_image, transformation_chain, device, model, all_candidate_embeddings, candidate_ids)
for each_match in sim_ids:
texture_filename = candidate_subset_emb[each_match]['filenames']
image_url = f'https://cdn.polyhaven.com/asset_img/thumbs/{texture_filename}?width=256&height=256'
match_dict[component_label].append(image_url)
return match_dict