Spaces:
Runtime error
Runtime error
canadianjosieharrison
commited on
Commit
•
b45ac3d
1
Parent(s):
4148997
Update image_helpers.py
Browse files- image_helpers.py +149 -113
image_helpers.py
CHANGED
@@ -1,113 +1,149 @@
|
|
1 |
-
import os
|
2 |
-
from PIL import Image
|
3 |
-
from cv2 import imread, cvtColor, COLOR_BGR2GRAY, COLOR_BGR2BGRA, COLOR_BGRA2RGB, threshold, THRESH_BINARY_INV, findContours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, contourArea, minEnclosingCircle
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
|
8 |
-
def convert_images_to_grayscale(folder_path):
|
9 |
-
# Check if the folder exists
|
10 |
-
if not os.path.isdir(folder_path):
|
11 |
-
print(f"The folder path {folder_path} does not exist.")
|
12 |
-
return
|
13 |
-
|
14 |
-
# Iterate over all files in the folder
|
15 |
-
for filename in os.listdir(folder_path):
|
16 |
-
if filename.endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):
|
17 |
-
image_path = os.path.join(folder_path, filename)
|
18 |
-
|
19 |
-
# Open an image file
|
20 |
-
with Image.open(image_path) as img:
|
21 |
-
# Convert image to grayscale
|
22 |
-
grayscale_img = img.convert('L').convert('RGB')
|
23 |
-
grayscale_img.save(os.path.join(folder_path, filename))
|
24 |
-
|
25 |
-
def crop_center_largest_contour(folder_path):
|
26 |
-
for each_image in os.listdir(folder_path):
|
27 |
-
image_path = os.path.join(folder_path, each_image)
|
28 |
-
image = imread(image_path)
|
29 |
-
gray_image = cvtColor(image, COLOR_BGR2GRAY)
|
30 |
-
|
31 |
-
# Threshold the image to get the non-white pixels
|
32 |
-
_, binary_mask = threshold(gray_image, 254, 255, THRESH_BINARY_INV)
|
33 |
-
|
34 |
-
# Find the largest contour
|
35 |
-
contours, _ = findContours(binary_mask, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE)
|
36 |
-
largest_contour = max(contours, key=contourArea)
|
37 |
-
|
38 |
-
# Get the minimum enclosing circle
|
39 |
-
(x, y), radius = minEnclosingCircle(largest_contour)
|
40 |
-
center = (int(x), int(y))
|
41 |
-
radius = int(radius/3) # Divide by three (arbitrary) to make shape better
|
42 |
-
|
43 |
-
# Crop the image to the bounding box of the circle
|
44 |
-
x_min = max(0, center[0] - radius)
|
45 |
-
x_max = min(image.shape[1], center[0] + radius)
|
46 |
-
y_min = max(0, center[1] - radius)
|
47 |
-
y_max = min(image.shape[0], center[1] + radius)
|
48 |
-
cropped_image = image[y_min:y_max, x_min:x_max]
|
49 |
-
cropped_image_rgba = cvtColor(cropped_image, COLOR_BGR2BGRA)
|
50 |
-
cropped_pil_image = Image.fromarray(cvtColor(cropped_image_rgba, COLOR_BGRA2RGB))
|
51 |
-
cropped_pil_image.save(image_path)
|
52 |
-
|
53 |
-
def
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
from cv2 import imread, cvtColor, COLOR_BGR2GRAY, COLOR_BGR2BGRA, COLOR_BGRA2RGB, threshold, THRESH_BINARY_INV, findContours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, contourArea, minEnclosingCircle
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
def convert_images_to_grayscale(folder_path):
|
9 |
+
# Check if the folder exists
|
10 |
+
if not os.path.isdir(folder_path):
|
11 |
+
print(f"The folder path {folder_path} does not exist.")
|
12 |
+
return
|
13 |
+
|
14 |
+
# Iterate over all files in the folder
|
15 |
+
for filename in os.listdir(folder_path):
|
16 |
+
if filename.endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):
|
17 |
+
image_path = os.path.join(folder_path, filename)
|
18 |
+
|
19 |
+
# Open an image file
|
20 |
+
with Image.open(image_path) as img:
|
21 |
+
# Convert image to grayscale
|
22 |
+
grayscale_img = img.convert('L').convert('RGB')
|
23 |
+
grayscale_img.save(os.path.join(folder_path, filename))
|
24 |
+
|
25 |
+
def crop_center_largest_contour(folder_path):
|
26 |
+
for each_image in os.listdir(folder_path):
|
27 |
+
image_path = os.path.join(folder_path, each_image)
|
28 |
+
image = imread(image_path)
|
29 |
+
gray_image = cvtColor(image, COLOR_BGR2GRAY)
|
30 |
+
|
31 |
+
# Threshold the image to get the non-white pixels
|
32 |
+
_, binary_mask = threshold(gray_image, 254, 255, THRESH_BINARY_INV)
|
33 |
+
|
34 |
+
# Find the largest contour
|
35 |
+
contours, _ = findContours(binary_mask, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE)
|
36 |
+
largest_contour = max(contours, key=contourArea)
|
37 |
+
|
38 |
+
# Get the minimum enclosing circle
|
39 |
+
(x, y), radius = minEnclosingCircle(largest_contour)
|
40 |
+
center = (int(x), int(y))
|
41 |
+
radius = int(radius/3) # Divide by three (arbitrary) to make shape better
|
42 |
+
|
43 |
+
# Crop the image to the bounding box of the circle
|
44 |
+
x_min = max(0, center[0] - radius)
|
45 |
+
x_max = min(image.shape[1], center[0] + radius)
|
46 |
+
y_min = max(0, center[1] - radius)
|
47 |
+
y_max = min(image.shape[0], center[1] + radius)
|
48 |
+
cropped_image = image[y_min:y_max, x_min:x_max]
|
49 |
+
cropped_image_rgba = cvtColor(cropped_image, COLOR_BGR2BGRA)
|
50 |
+
cropped_pil_image = Image.fromarray(cvtColor(cropped_image_rgba, COLOR_BGRA2RGB))
|
51 |
+
cropped_pil_image.save(image_path)
|
52 |
+
|
53 |
+
def calculate_variance(patch):
|
54 |
+
# Convert patch to numpy array
|
55 |
+
patch_array = np.array(patch)
|
56 |
+
# Calculate the variance
|
57 |
+
variance = np.var(patch_array)
|
58 |
+
return variance
|
59 |
+
|
60 |
+
def crop_least_variant_patch(folder_path):
|
61 |
+
for each_image in os.listdir(folder_path):
|
62 |
+
image_path = os.path.join(folder_path, each_image)
|
63 |
+
image = Image.open(image_path)
|
64 |
+
# define window size
|
65 |
+
width, height = image.size
|
66 |
+
window_size = round(height * .2)
|
67 |
+
stride = round(window_size * .2)
|
68 |
+
min_variance = float('inf')
|
69 |
+
best_patch = None
|
70 |
+
# slide window across image
|
71 |
+
for x in range(0, width - window_size + 1, stride):
|
72 |
+
for y in range(0, height - window_size + 1, stride):
|
73 |
+
patch = image.crop((x,y,x + window_size, y + window_size))
|
74 |
+
patch_w, patch_h = patch.size
|
75 |
+
total_pixels = patch_w * patch_h
|
76 |
+
white_pixels = np.sum(np.all(np.array(patch) == [255, 255, 255], axis=2))
|
77 |
+
if white_pixels < (total_pixels / 2):
|
78 |
+
# calculate variance / standard deviation
|
79 |
+
variance = calculate_variance(patch)
|
80 |
+
if variance < min_variance:
|
81 |
+
# update minimum var / sd
|
82 |
+
min_variance = variance
|
83 |
+
best_patch = patch
|
84 |
+
try:
|
85 |
+
best_patch.save(image_path)
|
86 |
+
except AttributeError as e:
|
87 |
+
print("No good homogenous patch to save.")
|
88 |
+
|
89 |
+
def extract_embeddings(transformation_chain, model: torch.nn.Module):
|
90 |
+
"""Utility to compute embeddings."""
|
91 |
+
device = model.device
|
92 |
+
|
93 |
+
def pp(batch):
|
94 |
+
images = batch["image"]
|
95 |
+
image_batch_transformed = torch.stack(
|
96 |
+
[transformation_chain(image) for image in images]
|
97 |
+
)
|
98 |
+
new_batch = {"pixel_values": image_batch_transformed.to(device)}
|
99 |
+
with torch.no_grad():
|
100 |
+
embeddings = model(**new_batch).last_hidden_state[:, 0].cpu()
|
101 |
+
return {"embeddings": embeddings}
|
102 |
+
|
103 |
+
return pp
|
104 |
+
|
105 |
+
def compute_scores(emb_one, emb_two):
|
106 |
+
"""Computes cosine similarity between two vectors."""
|
107 |
+
scores = torch.nn.functional.cosine_similarity(emb_one, emb_two)
|
108 |
+
return scores.numpy().tolist()
|
109 |
+
|
110 |
+
|
111 |
+
def fetch_similar(image, transformation_chain, device, model, all_candidate_embeddings, candidate_ids, top_k=3):
|
112 |
+
"""Fetches the `top_k` similar images with `image` as the query."""
|
113 |
+
# Prepare the input query image for embedding computation.
|
114 |
+
image_transformed = transformation_chain(image).unsqueeze(0)
|
115 |
+
new_batch = {"pixel_values": image_transformed.to(device)}
|
116 |
+
|
117 |
+
# Compute the embedding.
|
118 |
+
with torch.no_grad():
|
119 |
+
query_embeddings = model(**new_batch).last_hidden_state[:, 0].cpu()
|
120 |
+
|
121 |
+
# Compute similarity scores with all the candidate images at one go.
|
122 |
+
# We also create a mapping between the candidate image identifiers
|
123 |
+
# and their similarity scores with the query image.
|
124 |
+
sim_scores = compute_scores(all_candidate_embeddings, query_embeddings)
|
125 |
+
similarity_mapping = dict(zip(candidate_ids, sim_scores))
|
126 |
+
|
127 |
+
# Sort the mapping dictionary and return `top_k` candidates.
|
128 |
+
similarity_mapping_sorted = dict(
|
129 |
+
sorted(similarity_mapping.items(), key=lambda x: x[1], reverse=True)
|
130 |
+
)
|
131 |
+
id_entries = list(similarity_mapping_sorted.keys())[:top_k]
|
132 |
+
|
133 |
+
ids = list(map(lambda x: int(x.split("_")[0]), id_entries))
|
134 |
+
return ids
|
135 |
+
|
136 |
+
def plot_images(images):
|
137 |
+
|
138 |
+
plt.figure(figsize=(20, 10))
|
139 |
+
columns = 6
|
140 |
+
for (i, image) in enumerate(images):
|
141 |
+
ax = plt.subplot(int(len(images) / columns + 1), columns, i + 1)
|
142 |
+
if i == 0:
|
143 |
+
ax.set_title("Query Image\n")
|
144 |
+
else:
|
145 |
+
ax.set_title(
|
146 |
+
"Similar Image # " + str(i)
|
147 |
+
)
|
148 |
+
plt.imshow(np.array(image).astype("int"))
|
149 |
+
plt.axis("off")
|