import torch from transformers import pipeline, AutoImageProcessor, SegformerForSemanticSegmentation from typing import List from PIL import Image, ImageDraw, ImageFont, ImageChops, ImageMorph import numpy as np import datasets def find_center_of_non_black_pixels(image): # Get image dimensions width, height = image.size # Iterate over the pixels to find the center of the non-black pixels total_x = 0 total_y = 0 num_non_black_pixels = 0 top, left, bottom, right = height, width, 0, 0 for y in range(height): for x in range(width): pixel = image.getpixel((x, y)) if pixel != (255, 255, 255): # Non-black pixel total_x += x total_y += y num_non_black_pixels += 1 top = min(top, y) left = min(left, x) bottom = max(bottom, y) right = max(right, x) bbox_width = right - left bbox_height = bottom - top bbox_size = max(bbox_height, bbox_width) # Calculate the center of the non-black pixels if num_non_black_pixels == 0: return None # No non-black pixels found center_x = total_x // num_non_black_pixels center_y = total_y // num_non_black_pixels return (center_x, center_y), bbox_size def create_centered_image(image, center, bbox_size): # Get image dimensions width, height = image.size # Calculate the offset to center the non-black pixels in the new image offset_x = bbox_size // 2 - center[0] offset_y = bbox_size // 2 - center[1] # Create a new image with the same size as the original image new_image = Image.new("RGB", (bbox_size, bbox_size), color=(255, 255, 255)) # Paste the non-black pixels onto the new image new_image.paste(image, (offset_x, offset_y)) return new_image def ade_palette(): """ADE20K palette that maps each class to RGB values.""" return [ [180, 120, 20], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255], ] def label_to_color_image(label, colormap): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] labels_list = [] with open(r'labels.txt', 'r') as fp: for line in fp: labels_list.append(line[:-1]) colormap = np.asarray(ade_palette()) LABEL_NAMES = np.asarray(labels_list) LABEL_TO_INDEX = {label: i for i, label in enumerate(labels_list)} FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP, colormap) # FONT = ImageFont.truetype("Arial.ttf", 1000) def lift_black_value(image, lift_amount): """ Increase the black values of an image by a specified amount. Parameters: image (PIL.Image): The image to adjust. lift_amount (int): The amount to increase the brightness of the darker pixels. Returns: PIL.Image: The adjusted image with lifted black values. """ # Ensure that we don't go out of the 0-255 range for any pixel value def adjust_value(value): return min(255, max(0, value + lift_amount)) # Apply the point function to each channel return image.point(adjust_value) torch.set_grad_enabled(False) DEVICE = 'cuda' if torch.cuda.is_available() else "cpu" # MIN_AREA_THRESHOLD = 0.01 pipe = pipeline("image-segmentation", model="nvidia/segformer-b5-finetuned-ade-640-640") def segmentation_inference( image_rgb_pil: Image.Image, savepath: str ): outputs = pipe(image_rgb_pil, points_per_batch=32) for i, prediction in enumerate(outputs): label = prediction['label'] if (label == "floor") | (label == "wall") | (label == "ceiling"): mask = prediction['mask'] ## Save mask label_savepath = savepath + label + str(i) + '.png' fill_image = Image.new("RGB", image_rgb_pil.size, color=(255,255,255)) cutout_image = Image.composite(image_rgb_pil, fill_image, mask) # Crop mask center, bbox_size = find_center_of_non_black_pixels(cutout_image) if center is not None: centered_image = create_centered_image(cutout_image, center, bbox_size) centered_image.save(label_savepath) ## Inspect masks # inverted_mask = ImageChops.invert(mask) # mask_adjusted = lift_black_value(inverted_mask, 100) # color_index = LABEL_TO_INDEX[label] # color = tuple(FULL_COLOR_MAP[color_index][0]) # fill_image = Image.new("RGB", image_rgb_pil.size, color=color) # image_rgb_pil = Image.composite(image_rgb_pil, fill_image, mask_adjusted) # Display the final image # image_rgb_pil.show() # def online_segmentation_inference( # image_rgb_pil: Image.Image # ): # outputs = pipe(image_rgb_pil, points_per_batch=32) # # Create an image dictionary # image_dict = {"image": [], "label":[]} # for i, prediction in enumerate(outputs): # label = prediction['label'] # if (label == "floor") | (label == "wall") | (label == "ceiling"): # mask = prediction['mask'] # fill_image = Image.new("RGB", image_rgb_pil.size, color=(255,255,255)) # cutout_image = Image.composite(image_rgb_pil, fill_image, mask) # # Crop mask # center, bbox_size = find_center_of_non_black_pixels(cutout_image) # if center is not None: # centered_image = create_centered_image(cutout_image, center, bbox_size) # # Add image to image dictionary # image_dict["image"].append(centered_image) # image_dict["label"].append(label) # segmented_ds = datasets.Dataset.from_dict(image_dict).cast_column("image", datasets.Image()) # return segmented_ds