import gradio as gr import whisper from pytube import YouTube import requests headers = { 'accept': 'application/json', 'x-gladia-key': '89b0adf5-fb2c-48ba-8a66-76b02827fd14', # requests won't add a boundary if this header is set when you pass files= # 'Content-Type': 'multipart/form-data', } files = { 'audio': ("707539ca80d090a28c5ea7bbf93e8068.mp4", open('707539ca80d090a28c5ea7bbf93e8068.mp4', 'rb'), 'video/mp4'), 'audio_url': (None, 'http://files.gladia.io/example/audio-transcription/split_infinity.wav'), 'language': (None, 'english'), 'language_behaviour': (None, 'automatic single language'), } response = requests.post('https://api.gladia.io/audio/text/audio-transcription/', headers=headers, files=files) def get_audio(url): print(f'{url} start get audio ...') yt = YouTube(url) audio_file = yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4") print('aodio over ..') return audio_file def get_transcript(url, model_size, lang, format): audio_file = get_audio(url) audio_file = 'tmp.mp4' files = { 'audio': (f"{audio_file}", open(f'{audio_file}', 'rb'), 'video/mp4'), 'audio_url': (None, 'http://files.gladia.io/example/audio-transcription/split_infinity.wav'), 'language': (None, 'english'), 'language_behaviour': (None, 'automatic single language'), } response = requests.post('https://api.gladia.io/audio/text/audio-transcription/', headers=headers, files=files) return response.text def get_transcript2(url, model_size, lang, format): print('whisper loading ...') model = whisper.load_model(model_size) print('whisper over') if lang == "None": lang = None result = model.transcribe(get_audio(url), fp16=False, language=lang) if format == "None": return result["text"] elif format == ".srt": return format_to_srt(result["segments"]) def format_to_srt(segments): output = "" for i, segment in enumerate(segments): output += f"{i + 1}\n" output += f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n" output += f"{segment['text']}\n\n" return output def format_timestamp(t): hh = t//3600 mm = (t - hh*3600)//60 ss = t - hh*3600 - mm*60 mi = (t - int(t))*1000 return f"{int(hh):02d}:{int(mm):02d}:{int(ss):02d},{int(mi):03d}" langs = ["None"] + sorted(list(whisper.tokenizer.LANGUAGES.values())) model_size = list(whisper._MODELS.keys()) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): with gr.Row(): url = gr.Textbox(placeholder='Youtube video URL', label='URL') with gr.Row(): model_size = gr.Dropdown(choices=model_size, value='tiny', label="Model") lang = gr.Dropdown(choices=langs, value="None", label="Language (Optional)") format = gr.Dropdown(choices=["None", ".srt"], value="None", label="Timestamps? (Optional)") with gr.Row(): gr.Markdown("Larger models are more accurate, but slower. For 1min video, it'll take ~30s (tiny), ~1min (base), ~3min (small), ~5min (medium), etc.") transcribe_btn = gr.Button('Transcribe') with gr.Column(): outputs = gr.Textbox(placeholder='Transcription of the video', label='Transcription') transcribe_btn.click(get_transcript, inputs=[url, model_size, lang, format], outputs=outputs) demo.launch(debug=True)