Spaces:
Running
on
Zero
Running
on
Zero
aifeifei798
commited on
Commit
•
17187d2
1
Parent(s):
a62e14b
Update extras/expansion.py
Browse files- extras/expansion.py +129 -129
extras/expansion.py
CHANGED
@@ -1,129 +1,129 @@
|
|
1 |
-
# Fooocus GPT2 Expansion
|
2 |
-
# Algorithm created by Lvmin Zhang at 2023, Stanford
|
3 |
-
# If used inside Fooocus, any use is permitted.
|
4 |
-
# If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0).
|
5 |
-
# This applies to the word list, vocab, model, and algorithm.
|
6 |
-
|
7 |
-
|
8 |
-
import os
|
9 |
-
import torch
|
10 |
-
import math
|
11 |
-
import ldm_patched.modules.model_management as model_management
|
12 |
-
|
13 |
-
from transformers.generation.logits_process import LogitsProcessorList
|
14 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
15 |
-
# from modules.config import path_fooocus_expansion
|
16 |
-
from ldm_patched.modules.model_patcher import ModelPatcher
|
17 |
-
|
18 |
-
path_fooocus_expansion ="extras/fooocus_expansion"
|
19 |
-
# limitation of np.random.seed(), called from transformers.set_seed()
|
20 |
-
SEED_LIMIT_NUMPY = 2**32
|
21 |
-
neg_inf = - 8192.0
|
22 |
-
|
23 |
-
|
24 |
-
def safe_str(x):
|
25 |
-
x = str(x)
|
26 |
-
for _ in range(16):
|
27 |
-
x = x.replace(' ', ' ')
|
28 |
-
return x.strip(",. \r\n")
|
29 |
-
|
30 |
-
|
31 |
-
def remove_pattern(x, pattern):
|
32 |
-
for p in pattern:
|
33 |
-
x = x.replace(p, '')
|
34 |
-
return x
|
35 |
-
|
36 |
-
|
37 |
-
class FooocusExpansion:
|
38 |
-
def __init__(self):
|
39 |
-
self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion)
|
40 |
-
|
41 |
-
positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'),
|
42 |
-
encoding='utf-8').read().splitlines()
|
43 |
-
positive_words = ['Ġ' + x.lower() for x in positive_words if x != '']
|
44 |
-
|
45 |
-
self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf
|
46 |
-
|
47 |
-
debug_list = []
|
48 |
-
for k, v in self.tokenizer.vocab.items():
|
49 |
-
if k in positive_words:
|
50 |
-
self.logits_bias[0, v] = 0
|
51 |
-
debug_list.append(k[1:])
|
52 |
-
|
53 |
-
print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.')
|
54 |
-
|
55 |
-
# debug_list = '\n'.join(sorted(debug_list))
|
56 |
-
# print(debug_list)
|
57 |
-
|
58 |
-
# t11 = self.tokenizer(',', return_tensors="np")
|
59 |
-
# t198 = self.tokenizer('\n', return_tensors="np")
|
60 |
-
# eos = self.tokenizer.eos_token_id
|
61 |
-
|
62 |
-
self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion)
|
63 |
-
self.model.eval()
|
64 |
-
|
65 |
-
load_device = model_management.text_encoder_device()
|
66 |
-
offload_device = model_management.text_encoder_offload_device()
|
67 |
-
|
68 |
-
# MPS hack
|
69 |
-
if model_management.is_device_mps(load_device):
|
70 |
-
load_device = torch.device('cpu')
|
71 |
-
offload_device = torch.device('cpu')
|
72 |
-
|
73 |
-
use_fp16 = model_management.should_use_fp16(device=load_device)
|
74 |
-
|
75 |
-
if use_fp16:
|
76 |
-
self.model.half()
|
77 |
-
|
78 |
-
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
|
79 |
-
print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
|
80 |
-
|
81 |
-
@torch.no_grad()
|
82 |
-
@torch.inference_mode()
|
83 |
-
def logits_processor(self, input_ids, scores):
|
84 |
-
assert scores.ndim == 2 and scores.shape[0] == 1
|
85 |
-
self.logits_bias = self.logits_bias.to(scores)
|
86 |
-
|
87 |
-
bias = self.logits_bias.clone()
|
88 |
-
bias[0, input_ids[0].to(bias.device).long()] = neg_inf
|
89 |
-
bias[0, 11] = 0
|
90 |
-
|
91 |
-
return scores + bias
|
92 |
-
|
93 |
-
@torch.no_grad()
|
94 |
-
@torch.inference_mode()
|
95 |
-
def __call__(self, prompt, seed):
|
96 |
-
if prompt == '':
|
97 |
-
return ''
|
98 |
-
|
99 |
-
if self.patcher.current_device != self.patcher.load_device:
|
100 |
-
print('Fooocus Expansion loaded by itself.')
|
101 |
-
model_management.load_model_gpu(self.patcher)
|
102 |
-
|
103 |
-
seed = int(seed) % SEED_LIMIT_NUMPY
|
104 |
-
set_seed(seed)
|
105 |
-
prompt = safe_str(prompt) + ','
|
106 |
-
|
107 |
-
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
|
108 |
-
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
|
109 |
-
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
|
110 |
-
|
111 |
-
current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
|
112 |
-
max_token_length =
|
113 |
-
max_new_tokens = max_token_length - current_token_length
|
114 |
-
|
115 |
-
if max_new_tokens == 0:
|
116 |
-
return prompt[:-1]
|
117 |
-
|
118 |
-
# https://huggingface.co/blog/introducing-csearch
|
119 |
-
# https://huggingface.co/docs/transformers/generation_strategies
|
120 |
-
features = self.model.generate(**tokenized_kwargs,
|
121 |
-
top_k=100,
|
122 |
-
max_new_tokens=max_new_tokens,
|
123 |
-
do_sample=True,
|
124 |
-
logits_processor=LogitsProcessorList([self.logits_processor]))
|
125 |
-
|
126 |
-
response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
|
127 |
-
result = safe_str(response[0])
|
128 |
-
|
129 |
-
return result
|
|
|
1 |
+
# Fooocus GPT2 Expansion
|
2 |
+
# Algorithm created by Lvmin Zhang at 2023, Stanford
|
3 |
+
# If used inside Fooocus, any use is permitted.
|
4 |
+
# If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0).
|
5 |
+
# This applies to the word list, vocab, model, and algorithm.
|
6 |
+
|
7 |
+
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import math
|
11 |
+
import ldm_patched.modules.model_management as model_management
|
12 |
+
|
13 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
15 |
+
# from modules.config import path_fooocus_expansion
|
16 |
+
from ldm_patched.modules.model_patcher import ModelPatcher
|
17 |
+
|
18 |
+
path_fooocus_expansion ="extras/fooocus_expansion"
|
19 |
+
# limitation of np.random.seed(), called from transformers.set_seed()
|
20 |
+
SEED_LIMIT_NUMPY = 2**32
|
21 |
+
neg_inf = - 8192.0
|
22 |
+
|
23 |
+
|
24 |
+
def safe_str(x):
|
25 |
+
x = str(x)
|
26 |
+
for _ in range(16):
|
27 |
+
x = x.replace(' ', ' ')
|
28 |
+
return x.strip(",. \r\n")
|
29 |
+
|
30 |
+
|
31 |
+
def remove_pattern(x, pattern):
|
32 |
+
for p in pattern:
|
33 |
+
x = x.replace(p, '')
|
34 |
+
return x
|
35 |
+
|
36 |
+
|
37 |
+
class FooocusExpansion:
|
38 |
+
def __init__(self):
|
39 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion)
|
40 |
+
|
41 |
+
positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'),
|
42 |
+
encoding='utf-8').read().splitlines()
|
43 |
+
positive_words = ['Ġ' + x.lower() for x in positive_words if x != '']
|
44 |
+
|
45 |
+
self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf
|
46 |
+
|
47 |
+
debug_list = []
|
48 |
+
for k, v in self.tokenizer.vocab.items():
|
49 |
+
if k in positive_words:
|
50 |
+
self.logits_bias[0, v] = 0
|
51 |
+
debug_list.append(k[1:])
|
52 |
+
|
53 |
+
print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.')
|
54 |
+
|
55 |
+
# debug_list = '\n'.join(sorted(debug_list))
|
56 |
+
# print(debug_list)
|
57 |
+
|
58 |
+
# t11 = self.tokenizer(',', return_tensors="np")
|
59 |
+
# t198 = self.tokenizer('\n', return_tensors="np")
|
60 |
+
# eos = self.tokenizer.eos_token_id
|
61 |
+
|
62 |
+
self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion)
|
63 |
+
self.model.eval()
|
64 |
+
|
65 |
+
load_device = model_management.text_encoder_device()
|
66 |
+
offload_device = model_management.text_encoder_offload_device()
|
67 |
+
|
68 |
+
# MPS hack
|
69 |
+
if model_management.is_device_mps(load_device):
|
70 |
+
load_device = torch.device('cpu')
|
71 |
+
offload_device = torch.device('cpu')
|
72 |
+
|
73 |
+
use_fp16 = model_management.should_use_fp16(device=load_device)
|
74 |
+
|
75 |
+
if use_fp16:
|
76 |
+
self.model.half()
|
77 |
+
|
78 |
+
self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
|
79 |
+
print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
@torch.inference_mode()
|
83 |
+
def logits_processor(self, input_ids, scores):
|
84 |
+
assert scores.ndim == 2 and scores.shape[0] == 1
|
85 |
+
self.logits_bias = self.logits_bias.to(scores)
|
86 |
+
|
87 |
+
bias = self.logits_bias.clone()
|
88 |
+
bias[0, input_ids[0].to(bias.device).long()] = neg_inf
|
89 |
+
bias[0, 11] = 0
|
90 |
+
|
91 |
+
return scores + bias
|
92 |
+
|
93 |
+
@torch.no_grad()
|
94 |
+
@torch.inference_mode()
|
95 |
+
def __call__(self, prompt, seed):
|
96 |
+
if prompt == '':
|
97 |
+
return ''
|
98 |
+
|
99 |
+
if self.patcher.current_device != self.patcher.load_device:
|
100 |
+
print('Fooocus Expansion loaded by itself.')
|
101 |
+
model_management.load_model_gpu(self.patcher)
|
102 |
+
|
103 |
+
seed = int(seed) % SEED_LIMIT_NUMPY
|
104 |
+
set_seed(seed)
|
105 |
+
prompt = safe_str(prompt) + ','
|
106 |
+
|
107 |
+
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
|
108 |
+
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
|
109 |
+
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
|
110 |
+
|
111 |
+
current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
|
112 |
+
max_token_length = 225 * int(math.ceil(float(current_token_length) / 225.0))
|
113 |
+
max_new_tokens = max_token_length - current_token_length
|
114 |
+
|
115 |
+
if max_new_tokens == 0:
|
116 |
+
return prompt[:-1]
|
117 |
+
|
118 |
+
# https://huggingface.co/blog/introducing-csearch
|
119 |
+
# https://huggingface.co/docs/transformers/generation_strategies
|
120 |
+
features = self.model.generate(**tokenized_kwargs,
|
121 |
+
top_k=100,
|
122 |
+
max_new_tokens=max_new_tokens,
|
123 |
+
do_sample=True,
|
124 |
+
logits_processor=LogitsProcessorList([self.logits_processor]))
|
125 |
+
|
126 |
+
response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
|
127 |
+
result = safe_str(response[0])
|
128 |
+
|
129 |
+
return result
|