import streamlit as st import pandas as pd import numpy as np from transformers import pipeline from PIL import Image st.title("Toxic Tweets Sentiment Analysis") words = "Take that, you funking cat-dragon! You smell really bad!" text = st.text_area("Insert text for analysis below.", words) model_list = ["distilbert-base-uncased-finetuned-sst-2-english", "bert-base-cased", "openai/clip-vit-base-patch32", "emilyalsentzer/Bio_ClinicalBERT", "sentence-transformers/all-mpnet-base-v2", "facebook/bart-large-cnn", "openai/clip-vit-base-patch16", "speechbrain/spkrec-ecapa-voxceleb", "albert-base-v2"] model = st.selectbox("", model_list) sub = st.write("Pick the model to use for analyzing the text!") button = st.button("Analyze!") pipe = pipeline("text-classification") if(button): pipe = pipeline("text-classification", model) results = pipe(text) st.write(results)