import gradio as gr import numpy as np import random import spaces import torch import os from diffusers import DiffusionPipeline from huggingface_hub import login # Access the API token securely from Hugging Face Secrets hf_api_token = os.getenv("HF_API_TOKEN") if hf_api_token: login(token=hf_api_token) else: raise ValueError("Hugging Face API token not found in secrets.") # Set the device and dtype dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" # Load the diffusion pipeline from the gated repository pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)): if width > MAX_IMAGE_SIZE or height > MAX_IMAGE_SIZE: raise ValueError("Image size exceeds the maximum allowed dimensions.") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) try: image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=num_inference_steps, generator=generator, guidance_scale=guidance_scale ).images[0] except Exception as e: return None, seed, f"Error: {str(e)}" return image, seed, None examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", # Add more diverse examples ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# Custom Image Creator 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1)] """) with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=4, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=6, ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.0, maximum=20.0, step=0.5, value=7.5, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) run_button.click( fn=infer, inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps, guidance_scale], outputs=[result, seed], ) gr.Markdown(""" ## Save Your Image Right-click on the image and select 'Save As' to download the generated image. """) demo.launch()