from openai import AzureOpenAI from langchain_openai import AzureChatOpenAI import os import ffmpeg from typing import List from moviepy.editor import VideoFileClip import nltk from sklearn.feature_extraction.text import TfidfVectorizer from langchain import HuggingFaceHub, PromptTemplate, LLMChain import gradio as gr from pytube import YouTube import requests import logging import os nltk.download('punkt') nltk.download('stopwords') class VideoAnalytics: """ Class for performing analytics on videos including transcription, summarization, topic generation, and extraction of important sentences. """ def __init__(self): """ Initialize the VideoAnalytics object. Args: hf_token (str): Hugging Face API token. """ # Initialize AzureOpenAI client self.client = AzureOpenAI() self.mistral_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") # Initialize transcribed text variable self.transcribed_text = "" # API URL for accessing the Hugging Face model self.API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3" hf_token = os.getenv('HF_TOKEN') # Placeholder for Hugging Face API token self.hf_token = hf_token # Replace this with the actual Hugging Face API token # Set headers for API requests with Hugging Face token self.headers = {"Authorization": f"Bearer {self.hf_token}"} # Initialize english text variable self.english_text = "" self.openai_llm = AzureChatOpenAI( deployment_name="ChatGPT", ) # Configure logging settings logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') def transcribe_video(self, vid: str) -> str: """ Transcribe the audio of the video. Args: vid (str): Path to the video file. Returns: str: Transcribed text. """ try: # Load the video file and extract audio video = VideoFileClip(vid) audio = video.audio # Write audio to a temporary file audio.write_audiofile("output_audio.mp3") audio_file = open("output_audio.mp3", "rb") # Define a helper function to query the Hugging Face model def query(data): response = requests.post(self.API_URL, headers=self.headers, data=data) return response.json() # Send audio data to the Hugging Face model for transcription output = query(audio_file) print(output) # Update the transcribed_text attribute with the transcription result self.transcribed_text = output["text"] # Update the translation text into english_text self.english_text = self.translation() # Return the transcribed text return output["text"] except Exception as e: logging.error(f"Error transcribing video: {e}") return "" def generate_video_summary(self) -> str: """ Generate a summary of the transcribed video. Returns: str: Generated summary. """ try: # Define a conversation between system and user conversation = [ {"role": "system", "content": "You are a Summarizer"}, {"role": "user", "content": f"""summarize the following text delimited by triple backticks.Output must in english. In two format of Outputs given below: Abstractive Summary: Extractive Summary: ```{self.english_text}``` """} ] # Generate completion using ChatGPT model response = self.client.chat.completions.create( model="ChatGPT", messages=conversation, temperature=0, max_tokens=1000 ) # Get the generated summary message message = response.choices[0].message.content return message except Exception as e: logging.error(f"Error generating video summary: {e}") return "" def generate_topics(self) -> str: """ Generate topics from the transcribed video. Returns: str: Generated topics. """ try: # Define a conversation between system and user conversation = [ {"role": "system", "content": "You are a Topic Generator"}, {"role": "user", "content": f"""generate single Topics from the following text don't make sentence for topic generation,delimited by triple backticks.Output must in english. list out the topics: Topics: ```{self.english_text}``` """} ] # Generate completion using ChatGPT model response = self.client.chat.completions.create( model="ChatGPT", messages=conversation, temperature=0, max_tokens=1000 ) # Get the generated topics message message = response.choices[0].message.content return message except Exception as e: logging.error(f"Error generating topics: {e}") return "" def translation(self) -> str: """ translation from the transcribed video. Returns: str: translation. """ try: # Define a conversation between system and user conversation = [ {"role": "system", "content": "You are a Multilingual Translator"}, {"role": "user", "content": f""" Translate the following text in English ,delimited by triple backticks. ```{self.transcribed_text}``` """} ] # Generate completion using ChatGPT model response = self.client.chat.completions.create( model="ChatGPT", messages=conversation, temperature=0, max_tokens=1000 ) # Get the generated topics message message = response.choices[0].message.content return message except Exception as e: logging.error(f"Error generating topics: {e}") return "" def format_prompt(self, question: str, data: str) -> str: """ Formats the prompt for the language model. Args: question (str): The user's question. data (str): The data to be analyzed. Returns: str: Formatted prompt. """ prompt = "" prompt = f"""[INST] you are the german language and universal language expert .your task is analyze the given data and user ask any question about given data answer to the user question.your returning answer must in user's language.otherwise reply i don't know. data:{data} question:{question}[/INST]""" prompt1 = f"[INST] {question} [/INST]" return prompt+prompt1 def generate(self, prompt: str, transcribed_text: str, temperature=0.9, max_new_tokens=5000, top_p=0.95, repetition_penalty=1.0) -> str: """ Generates text based on the prompt and transcribed text. Args: prompt (str): The prompt for generating text. transcribed_text (str): The transcribed text for analysis. temperature (float): Controls the randomness of the sampling. Default is 0.9. max_new_tokens (int): Maximum number of tokens to generate. Default is 5000. top_p (float): Nucleus sampling parameter. Default is 0.95. repetition_penalty (float): Penalty for repeating the same token. Default is 1.0. Returns: str: Generated text. """ try: temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) # Format the prompt formatted_prompt = self.format_prompt(prompt,transcribed_text) # Generate text using the mistral client stream = self.mistral_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" # Concatenate generated text for response in stream: output += response.token.text return output.replace("","") except Exception as e: logging.error(f"Error in text generation: {e}") return "An error occurred during text generation." def video_qa(self, question: str, model: str) -> str: """ Performs video question answering. Args: question (str): The question asked by the user. model (str): The language model to be used ("OpenAI" or "Mixtral"). Returns: str: Answer to the user's question. """ try: if model == "OpenAI": template = """you are the universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.otherwise reply i don't know. extracted_text:{text} user_question:{question}""" prompt = PromptTemplate(template=template, input_variables=["text","question"]) llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.openai_llm) # Run the language model chain result = llm_chain.run({"text":self.english_text,"question":question}) return result elif model == "Mixtral": # Generate answer using Mixtral model result = self.generate(question,self.english_text) return result except Exception as e: logging.error(f"Error in video question answering: {e}") return "An error occurred during video question answering." def extract_video_important_sentence(self) -> str: """ Extract important sentences from the transcribed video. Returns: str: Extracted important sentences. """ try: # Tokenize the sentences sentences = nltk.sent_tokenize(self.english_text) # Initialize TF-IDF vectorizer tfidf_vectorizer = TfidfVectorizer() # Fit the vectorizer on the summary sentences tfidf_matrix = tfidf_vectorizer.fit_transform(sentences) # Calculate sentence scores based on TF-IDF values sentence_scores = tfidf_matrix.sum(axis=1) # Create a list of (score, sentence) tuples sentence_rankings = [(score, sentence) for score, sentence in zip(sentence_scores, sentences)] # Sort sentences by score in descending order sentence_rankings.sort(reverse=True) # Set a threshold for selecting sentences threshold = 2.5 # Adjust as needed # Select sentences with scores above the threshold selected_sentences = [sentence for score, sentence in sentence_rankings if score >= threshold] # Join selected sentences to form the summary summary = '\n\n'.join(selected_sentences) return summary except Exception as e: logging.error(f"Error extracting important sentences: {e}") return "" def write_text_files(self, text: str, filename: str) -> None: """ Write text to a file. Args: text (str): Text to be written to the file. filename (str): Name of the file. """ try: file_path = f"{filename}.txt" with open(file_path, 'w') as file: # Write content to the file file.write(text) except Exception as e: logging.error(f"Error writing text to file: {e}") def Download(self, link: str) -> str: """ Download a video from YouTube. Args: link (str): YouTube video link. Returns: str: Path to the downloaded video file. """ try: # Initialize YouTube object with the provided link youtubeObject = YouTube(link) # Get the highest resolution stream youtubeObject = youtubeObject.streams.get_highest_resolution() try: # Attempt to download the video file_name = youtubeObject.download() return file_name except: # Log any errors that occur during video download logging.info("An error has occurred") logging.info("Download is completed successfully") except Exception as e: # Log any errors that occur during initialization of YouTube object logging.error(f"Error downloading video: {e}") return "" def save_audio_with_gtts(self,text, filename): tts = gTTS(text=text, lang='en') tts.save(filename) return filename def main(self, video: str = None, input_path: str = None) -> tuple: """ Perform video analytics. Args: video (str): Path to the video file. input_path (str): Input path for the video. Returns: tuple: Summary, important sentences, and topics. """ try: # Download the video if input_path is provided, otherwise use the provided video path if input_path: input_path = self.Download(input_path) video_ = VideoFileClip(input_path) duration = video_.duration video_.close() if round(duration) <= 600: text = self.transcribe_video(input_path) else: return "Video Duration Above 10 Minutes,Try Below 10 Minutes Video","","" elif video: video_ = VideoFileClip(video) duration = video_.duration video_.close() if round(duration) <= 600: text = self.transcribe_video(video) input_path = video else: return "Video Duration Above 10 Minutes,Try Below 10 Minutes Video","","" # Generate summary, important sentences, and topics summary = self.generate_video_summary() self.write_text_files(summary,"Summary") summary_voice = save_audio_with_gtts(summary,"summary.mp3") important_sentences = self.extract_video_important_sentence() self.write_text_files(important_sentences,"Important_Sentence") important_sentences_voice = save_audio_with_gtts(important_sentences,"important_sentences.mp3") topics = self.generate_topics() self.write_text_files(topics,"Topics") topics_voice = save_audio_with_gtts(topics,"topics.mp3") # Return the generated summary, important sentences, and topics return summary,important_sentences,topics,summary_voice,important_sentences_voice,topics_voice except Exception as e: # Log any errors that occur during video analytics logging.error(f"Error in main function: {e}") return "", "", "" def gradio_interface(self): with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo: gr.HTML("""

Video Analytics

""") with gr.Row(): yt_link = gr.Textbox(label= "Youtube Link",placeholder="https://www.youtube.com/watch?v=") with gr.Row(): video = gr.Video(sources="upload",height=200,width=300) with gr.Row(): submit_btn = gr.Button(value="Submit") with gr.Tab("Summary"): with gr.Row(): summary = gr.Textbox(show_label=False,lines=10) with gr.Row(): summary_download = gr.DownloadButton(label="Download",value="Summary.txt",visible=True,size='lg',elem_classes="download_button") with gr.Row(): summary_audio = gr.Audio(show_label= False,elem_classes='audio_class') with gr.Tab("Important Sentences"): with gr.Row(): Important_Sentences = gr.Textbox(show_label=False,lines=10) with gr.Row(): sentence_download = gr.DownloadButton(label="Download",value="Important_Sentence.txt",visible=True,size='lg',elem_classes="download_button") with gr.Row(): important_sentence_audio = gr.Audio(show_label = False,elem_classes='audio_class') with gr.Tab("Topics"): with gr.Row(): Topics = gr.Textbox(show_label=False,lines=10) with gr.Row(): topics_download = gr.DownloadButton(label="Download",value="Topics.txt",visible=True,size='lg',elem_classes="download_button") with gr.Row(): topics_audio = gr.Audio(show_label=False,elem_classes='audio_class') with gr.Tab("Video QA"): with gr.Row(): with gr.Column(scale=0.70): question = gr.Textbox(show_label=False,placeholder="Ask Your Questions...") with gr.Column(scale=0.30): model = gr.Dropdown(["OpenAI", "Mixtral"],show_label=False,value="model") with gr.Row(): result = gr.Textbox(label='Answer',lines=10) submit_btn.click(self.main,[video,yt_link],[summary,Important_Sentences,Topics,summary_audio,important_sentence_audio,topics_audio]) question.submit(self.video_qa,[question,model],result) demo.launch() if __name__ == "__main__": video_analytics = VideoAnalytics() video_analytics.gradio_interface()