|
import gradio as gr |
|
import torch |
|
from torch import LongTensor, FloatTensor |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer |
|
from threading import Thread |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1") |
|
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-3B-v1", torch_dtype=torch.bfloat16) |
|
|
|
|
|
class StopOnTokens(StoppingCriteria): |
|
def __call__(self, input_ids: LongTensor, scores: FloatTensor, **kwargs) -> bool: |
|
stop_ids=[29,0] |
|
for stop_id in stop_ids: |
|
if input_ids[0][-1]==stop_id: |
|
return True |
|
return False |
|
|
|
def predict(message, history): |
|
try: |
|
history_transformer_format = history+[[message, ""]] |
|
stop=StopOnTokens() |
|
|
|
messages="".join(["".join(["\n<human>:"+item[0], "\n<bot>:"+item[1]]) for item in history_transformer_format]) |
|
|
|
|
|
model_inputs =tokenizer([messages], return_tensors="pt") |
|
streamer=TextIteratorStreamer( |
|
tokenizer, |
|
timeout=10., |
|
skip_prompt=True, |
|
skip_special_tokens=True |
|
) |
|
|
|
generate_kwargs=dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=1024, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=1000, |
|
temperature=1.0, |
|
num_beams=1, |
|
stopping_criteria=StoppingCriteriaList([stop]) |
|
) |
|
|
|
t=Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
partical_message="" |
|
for new_token in streamer: |
|
if new_token !='<': |
|
partical_message+=new_token |
|
yield partical_message |
|
except Exception as e: |
|
yield "Sorry, I don't understand that." |
|
|
|
|
|
gr.ChatInterface(predict).queue().launch() |