File size: 18,580 Bytes
f949b3f
 
 
 
 
 
 
 
 
 
81022ab
f949b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b1e20
 
f949b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b1e20
f949b3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from pathlib import Path
from typing import Any, Optional, Union, Callable

import pytorch_lightning as pl
import torch
from diffusers import DDPMScheduler, DiffusionPipeline, AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat

from transformers import CLIPTextModel, CLIPTokenizer
from t2v_enhanced.utils.video_utils import ResultProcessor, save_videos_grid, video_naming

from t2v_enhanced.model import pl_module_params_controlnet

from t2v_enhanced.model.diffusers_conditional.models.controlnet.controlnet import ControlNetModel
from t2v_enhanced.model.diffusers_conditional.models.controlnet.unet_3d_condition import UNet3DConditionModel
from t2v_enhanced.model.diffusers_conditional.models.controlnet.pipeline_text_to_video_w_controlnet_synth import TextToVideoSDPipeline

from t2v_enhanced.model.diffusers_conditional.models.controlnet.processor import set_use_memory_efficient_attention_xformers
from t2v_enhanced.model.diffusers_conditional.models.controlnet.mask_generator import MaskGenerator

import warnings
# from warnings import warn
from t2v_enhanced.utils.iimage import IImage
from t2v_enhanced.utils.object_loader import instantiate_object
from t2v_enhanced.utils.object_loader import get_class


class VideoLDM(pl.LightningModule):

    def __init__(self,
                 inference_params: pl_module_params_controlnet.InferenceParams,
                 opt_params: pl_module_params_controlnet.OptimizerParams = None,
                 unet_params: pl_module_params_controlnet.UNetParams = None,
                 ):
        super().__init__()

        self.inference_generator = torch.Generator(device=self.device)

        self.opt_params = opt_params
        self.unet_params = unet_params

        print(f"Base pipeline from: {unet_params.pipeline_repo}")
        print(f"Pipeline class {unet_params.pipeline_class}")
        # load entire pipeline (unet, vq, text encoder,..)
        state_dict_control_model = None
        state_dict_fusion = None
        state_dict_base_model = None

        if len(opt_params.load_trained_controlnet_from_ckpt) > 0:
            state_dict_ckpt = torch.load(opt_params.load_trained_controlnet_from_ckpt, map_location=torch.device("cpu"))
            state_dict_ckpt = state_dict_ckpt["state_dict"]
            state_dict_control_model = dict(filter(lambda x: x[0].startswith("unet"), state_dict_ckpt.items()))
            state_dict_control_model = {k.split("unet.")[1]: v for (k, v) in state_dict_control_model.items()}

            state_dict_fusion = dict(filter(lambda x: "cross_attention_merger" in x[0], state_dict_ckpt.items()))
            state_dict_fusion = {k.split("base_model.")[1]: v for (k, v) in state_dict_fusion.items()}
            del state_dict_ckpt

        state_dict_proj = None
        state_dict_ckpt = None

        if hasattr(unet_params, "use_resampler") and unet_params.use_resampler:
            num_queries = unet_params.num_frames if unet_params.num_frames > 1 else None
            if unet_params.use_image_tokens_ctrl:
                num_queries = unet_params.num_control_input_frames
                assert unet_params.frame_expansion == "none"
            image_encoder = self.unet_params.image_encoder
            embedding_dim = image_encoder.embedding_dim

            resampler = instantiate_object(self.unet_params.resampler_cls, video_length=num_queries, embedding_dim=embedding_dim, input_tokens=image_encoder.num_tokens, num_layers=self.unet_params.resampler_merging_layers, aggregation=self.unet_params.aggregation)

            state_dict_proj = None

            self.resampler = resampler
            self.image_encoder = image_encoder


        noise_scheduler = DDPMScheduler.from_pretrained(self.unet_params.pipeline_repo, subfolder="scheduler")
        tokenizer = CLIPTokenizer.from_pretrained(self.unet_params.pipeline_repo, subfolder="tokenizer")
        text_encoder = CLIPTextModel.from_pretrained(self.unet_params.pipeline_repo, subfolder="text_encoder")
        vae = AutoencoderKL.from_pretrained(self.unet_params.pipeline_repo, subfolder="vae")
        base_model = UNet3DConditionModel.from_pretrained(self.unet_params.pipeline_repo, subfolder="unet", low_cpu_mem_usage=False, device_map=None, merging_mode=self.unet_params.merging_mode_base, use_image_embedding=unet_params.use_resampler and unet_params.use_image_tokens_main, use_fps_conditioning=self.opt_params.use_fps_conditioning, unet_params=unet_params)

        if state_dict_base_model is not None:
            miss, unex = base_model.load_state_dict(state_dict_base_model, strict=False)
            assert len(unex) == 0
            if len(miss) > 0:
                warnings.warn(f"Missing keys when loading base_mode:{miss}")
            del state_dict_base_model
        if state_dict_fusion is not None:
            miss, unex = base_model.load_state_dict(state_dict_fusion, strict=False)
            assert len(unex) == 0
            del state_dict_fusion

        print("PIPE LOADING DONE")
        self.noise_scheduler = noise_scheduler
        self.tokenizer = tokenizer
        self.text_encoder = text_encoder
        self.vae = vae

        self.unet = ControlNetModel.from_unet(
            unet=base_model,
            conditioning_embedding_out_channels=unet_params.conditioning_embedding_out_channels,
            downsample_controlnet_cond=unet_params.downsample_controlnet_cond,
            num_frames=unet_params.num_frames if (unet_params.frame_expansion != "none" or self.unet_params.use_controlnet_mask) else unet_params.num_control_input_frames,
            num_frame_conditioning=unet_params.num_control_input_frames,
            frame_expansion=unet_params.frame_expansion,
            pre_transformer_in_cond=unet_params.pre_transformer_in_cond,
            num_tranformers=unet_params.num_tranformers,
            vae=AutoencoderKL.from_pretrained(self.unet_params.pipeline_repo, subfolder="vae"),
            zero_conv_mode=unet_params.zero_conv_mode,
            merging_mode=unet_params.merging_mode,
            condition_encoder=unet_params.condition_encoder,
            use_controlnet_mask=unet_params.use_controlnet_mask,
            use_image_embedding=unet_params.use_resampler and unet_params.use_image_tokens_ctrl,
            unet_params=unet_params,
            use_image_encoder_normalization=unet_params.use_image_encoder_normalization,
        )
        if state_dict_control_model is not None:
            miss, unex = self.unet.load_state_dict(
                state_dict_control_model, strict=False)
            if len(miss) > 0:
                print("WARNING: Loading checkpoint for controlnet misses states")
                print(miss)

        if unet_params.frame_expansion == "none":
            attention_params = self.unet_params.attention_mask_params
            assert not attention_params.temporal_self_attention_only_on_conditioning and not attention_params.spatial_attend_on_condition_frames and not attention_params.temp_attend_on_neighborhood_of_condition_frames

        self.mask_generator = MaskGenerator(
            self.unet_params.attention_mask_params, num_frame_conditioning=self.unet_params.num_control_input_frames, num_frames=self.unet_params.num_frames)
        self.mask_generator_base = MaskGenerator(
            self.unet_params.attention_mask_params_base, num_frame_conditioning=self.unet_params.num_control_input_frames, num_frames=self.unet_params.num_frames)

        if state_dict_proj is not None and unet_params.use_image_tokens_main:
            if unet_params.use_image_tokens_main:
                missing, unexpected = base_model.load_state_dict(
                    state_dict_proj, strict=False)
            elif unet_params.use_image_tokens_ctrl:
                missing, unexpected = unet.load_state_dict(
                    state_dict_proj, strict=False)
            assert len(unexpected) == 0, f"Unexpected entries {unexpected}"
            print(f"Missing keys state proj = {missing}")
            del state_dict_proj

        base_model.requires_grad_(False)
        self.base_model = base_model
        self.unet.requires_grad_(False)
        self.text_encoder.requires_grad_(False)
        self.vae.requires_grad_(False)

        layers_config = opt_params.layers_config
        layers_config.set_requires_grad(self)

        print("CUSTOM XFORMERS ATTENTION USED.")
        if is_xformers_available():
            set_use_memory_efficient_attention_xformers(self.unet, num_frame_conditioning=self.unet_params.num_control_input_frames,
                                                        num_frames=self.unet_params.num_frames,
                                                        attention_mask_params=self.unet_params.attention_mask_params
                                                        )
            set_use_memory_efficient_attention_xformers(self.base_model, num_frame_conditioning=self.unet_params.num_control_input_frames,
                                                        num_frames=self.unet_params.num_frames,
                                                        attention_mask_params=self.unet_params.attention_mask_params_base)

        if len(inference_params.scheduler_cls) > 0:
            inf_scheduler_class = get_class(inference_params.scheduler_cls)
        else:
            inf_scheduler_class = DDIMScheduler

        inf_scheduler = inf_scheduler_class.from_pretrained(
            self.unet_params.pipeline_repo, subfolder="scheduler")
        inference_pipeline = TextToVideoSDPipeline(vae=self.vae,
                                                   text_encoder=self.text_encoder,
                                                   tokenizer=self.tokenizer,
                                                   unet=self.base_model,
                                                   controlnet=self.unet,
                                                   scheduler=inf_scheduler
                                                   )

        inference_pipeline.set_noise_generator(self.opt_params.noise_generator)
        inference_pipeline.enable_vae_slicing()

        inference_pipeline.set_progress_bar_config(disable=True)

        self.inference_params = inference_params
        self.inference_pipeline = inference_pipeline

        self.result_processor = ResultProcessor(fps=self.inference_params.frame_rate, n_frames=self.inference_params.video_length)

    def on_start(self):
        datamodule = self.trainer._data_connector._datahook_selector.datamodule
        pipe_id_model = self.unet_params.pipeline_repo
        for dataset_key in ["video_dataset", "image_dataset", "predict_dataset"]:
            dataset = getattr(datamodule, dataset_key, None)
            if dataset is not None and hasattr(dataset, "model_id"):
                pipe_id_data = dataset.model_id
                assert pipe_id_model == pipe_id_data, f"Model and Dataloader need the same pipeline path. Found '{pipe_id_model}' and '{dataset_key}.model_id={pipe_id_data}'. Consider setting '--data.{dataset_key}.model_id={pipe_id_data}'"
        self.result_processor.set_logger(self.logger)

    def on_predict_start(self) -> None:
        self.on_start()
        # pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
        # pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        # pipe.set_progress_bar_config(disable=True)
        # self.first_stage = pipe.to(self.device)

    def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any:
        cfg = self.trainer.predict_cfg

        result_file_stem = cfg["result_file_stem"]
        storage_fol = Path(cfg['predict_dir'])
        prompts = [cfg["prompt"]]

        inference_params: pl_module_params_controlnet.InferenceParams = self.inference_params
        conditioning_type = inference_params.conditioning_type
        # n_autoregressive_generations = inference_params.n_autoregressive_generations
        n_autoregressive_generations = cfg["n_autoregressive_generations"]
        mode = inference_params.mode
        start_from_real_input = inference_params.start_from_real_input
        assert isinstance(prompts, list)

        prompts = n_autoregressive_generations * prompts

        self.inference_generator.manual_seed(self.inference_params.seed)

        assert self.unet_params.num_control_input_frames == self.inference_params.video_length//2, f"currently we assume to have an equal size for and second half of the frame interval, e.g. 16 frames, and we condition on 8. Current setup: {self.unet_params.num_frame_conditioning} and {self.inference_params.video_length}"

        chunks_conditional = []
        batch_size = 1
        shape = (batch_size, self.inference_pipeline.unet.config.in_channels, self.inference_params.video_length,
                 self.inference_pipeline.unet.config.sample_size, self.inference_pipeline.unet.config.sample_size)
        for idx, prompt in enumerate(prompts):
            if idx > 0:
                content = sample*2-1
                content_latent = self.vae.encode(content).latent_dist.sample() * self.vae.config.scaling_factor
                content_latent = rearrange(content_latent, "F C W H -> 1 C F W H")
                content_latent = content_latent[:, :, self.unet_params.num_control_input_frames:].detach().clone()

            if hasattr(self.inference_pipeline, "noise_generator"):
                latents = self.inference_pipeline.noise_generator.sample_noise(shape=shape, device=self.device, dtype=self.dtype, generator=self.inference_generator, content=content_latent if idx > 0 else None)
            else:
                latents = None
            if idx == 0:
                sample = cfg["video"]
            else:
                if inference_params.conditioning_type == "fixed":
                    context = chunks_conditional[0][:self.unet_params.num_frame_conditioning]
                    context = [context]
                    context = [2*sample-1 for sample in context]

                    input_frames_conditioning = torch.cat(context).detach().clone()
                    input_frames_conditioning = rearrange(input_frames_conditioning, "F C W H -> 1 F C W H")
                elif inference_params.conditioning_type == "last_chunk":
                    input_frames_conditioning = condition_input[:, -self.unet_params.num_frame_conditioning:].detach().clone()
                elif inference_params.conditioning_type == "past":
                    context = [sample[:self.unet_params.num_control_input_frames] for sample in chunks_conditional]
                    context = [2*sample-1 for sample in context]

                    input_frames_conditioning = torch.cat(context).detach().clone()
                    input_frames_conditioning = rearrange(input_frames_conditioning, "F C W H -> 1 F C W H")
                else:
                    raise NotImplementedError()

                input_frames = condition_input[:, self.unet_params.num_control_input_frames:].detach().clone()

                sample = self(prompt, input_frames=input_frames, input_frames_conditioning=input_frames_conditioning, latents=latents)

            if hasattr(self.inference_pipeline, "reset_noise_generator_state"):
                self.inference_pipeline.reset_noise_generator_state()

            condition_input = rearrange(sample, "F C W H -> 1 F C W H")
            condition_input = (2*condition_input)-1  # range: [-1,1]

            # store first 16 frames, then always last 8 of a chunk
            chunks_conditional.append(sample)

        result_formats = self.inference_params.result_formats
        # result_formats = [gif", "mp4"]
        concat_video = self.inference_params.concat_video

        def IImage_normalized(x): return IImage(x, vmin=0, vmax=1)
        for result_format in result_formats:
            save_format = result_format.replace("eval_", "")

            merged_video = None
            for chunk_idx, (prompt, video) in enumerate(zip(prompts, chunks_conditional)):
                if chunk_idx == 0:
                    current_video = IImage_normalized(video)
                else:
                    current_video = IImage_normalized(video[self.unet_params.num_control_input_frames:])

                if merged_video is None:
                    merged_video = current_video
                else:
                    merged_video &= current_video

            if concat_video:
                filename = video_naming(prompts[0], save_format, batch_idx, 0)
                result_file_video = (storage_fol / filename).absolute().as_posix()
                result_file_video = (Path(result_file_video).parent / (result_file_stem+Path(result_file_video).suffix)).as_posix()
                self.result_processor.save_to_file(video=merged_video.torch(vmin=0, vmax=1), prompt=prompts[0], video_filename=result_file_video, prompt_on_vid=False)

    def forward(self, prompt, input_frames=None, input_frames_conditioning=None, latents=None):
        call_params = self.inference_params.to_dict()
        # print(f"INFERENCE PARAMS = {call_params}")
        call_params["prompt"] = prompt

        call_params["image"] = input_frames
        call_params["num_frames"] = self.inference_params.video_length
        call_params["return_dict"] = False
        call_params["output_type"] = "pt_t2v"
        call_params["mask_generator"] = self.mask_generator
        call_params["precision"] = "16" if self.trainer.precision.startswith("16") else "32"
        call_params["no_text_condition_control"] = self.opt_params.no_text_condition_control
        call_params["weight_control_sample"] = self.unet_params.weight_control_sample
        call_params["use_controlnet_mask"] = self.unet_params.use_controlnet_mask
        call_params["skip_controlnet_branch"] = self.opt_params.skip_controlnet_branch
        call_params["img_cond_resampler"] = self.resampler if self.unet_params.use_resampler else None
        call_params["img_cond_encoder"] = self.image_encoder if self.unet_params.use_resampler else None
        call_params["input_frames_conditioning"] = input_frames_conditioning
        call_params["cfg_text_image"] = self.unet_params.cfg_text_image
        call_params["use_of"] = self.unet_params.use_of
        if latents is not None:
            call_params["latents"] = latents

        sample = self.inference_pipeline(generator=self.inference_generator, **call_params)
        return sample