hpoghos's picture
add code
f949b3f
raw
history blame
13.7 kB
import os
import subprocess
import tempfile
from pathlib import Path
from typing import Union
import shutil
import cv2
import imageio
import numpy as np
import torch
import torchvision
from decord import VideoReader, cpu
from einops import rearrange, repeat
from t2v_enhanced.utils.iimage import IImage
from PIL import Image, ImageDraw, ImageFont
from torchvision.utils import save_image
channel_first = 0
channel_last = -1
def video_naming(prompt, extension, batch_idx, idx):
prompt_identifier = prompt.replace(" ", "_")
prompt_identifier = prompt_identifier.replace("/", "_")
if len(prompt_identifier) > 40:
prompt_identifier = prompt_identifier[:40]
filename = f"{batch_idx:04d}_{idx:04d}_{prompt_identifier}.{extension}"
return filename
def video_naming_chunk(prompt, extension, batch_idx, idx, chunk_idx):
prompt_identifier = prompt.replace(" ", "_")
prompt_identifier = prompt_identifier.replace("/", "_")
if len(prompt_identifier) > 40:
prompt_identifier = prompt_identifier[:40]
filename = f"{batch_idx}_{idx}_{chunk_idx}_{prompt_identifier}.{extension}"
return filename
class ResultProcessor():
def __init__(self, fps: int, n_frames: int, logger=None) -> None:
self.fps = fps
self.logger = logger
self.n_frames = n_frames
def set_logger(self, logger):
self.logger = logger
def _create_video(self, video, prompt, filename: Union[str, Path], append_video: torch.FloatTensor = None, input_flow=None):
if video.ndim == 5:
# can be batches if we provide list of filenames
assert video.shape[0] == 1
video = video[0]
if video.shape[0] == 3 and video.shape[1] == self.n_frames:
video = rearrange(video, "C F W H -> F C W H")
assert video.shape[1] == 3, f"Wrong video format. Got {video.shape}"
if isinstance(filename, Path):
filename = filename.as_posix()
# assert video.max() <= 1 and video.min() >= 0
assert video.max() <=1.1 and video.min() >= -0.1, f"video has unexpected range: [{video.min()}, {video.max()}]"
vid_obj = IImage(video, vmin=0, vmax=1)
if prompt is not None:
vid_obj = vid_obj.append_text(prompt, padding=(0, 50, 0, 0))
if append_video is not None:
if append_video.ndim == 5:
assert append_video.shape[0] == 1
append_video = append_video[0]
if append_video.shape[0] < video.shape[0]:
append_video = torch.concat([append_video,
repeat(append_video[-1, None], "F C W H -> (rep F) C W H", rep=video.shape[0]-append_video.shape[0])], dim=0)
if append_video.ndim == 3 and video.ndim == 4:
append_video = repeat(
append_video, "C W H -> F C W H", F=video.shape[0])
append_video = IImage(append_video, vmin=-1, vmax=1)
if prompt is not None:
append_video = append_video.append_text(
"input_frame", padding=(0, 50, 0, 0))
vid_obj = vid_obj | append_video
vid_obj = vid_obj.setFps(self.fps)
vid_obj.save(filename)
def _create_prompt_file(self, prompt, filename, video_path: str = None):
filename = Path(filename)
filename = filename.parent / (filename.stem+".txt")
with open(filename.as_posix(), "w") as file_writer:
file_writer.write(prompt)
file_writer.write("\n")
if video_path is not None:
file_writer.write(video_path)
else:
file_writer.write(" no_source")
def log_video(self, video: torch.FloatTensor, prompt: str, video_id: str, log_folder: str, input_flow=None, video_path_input: str = None, extension: str = "gif", prompt_on_vid: bool = True, append_video: torch.FloatTensor = None):
with tempfile.TemporaryDirectory() as tmpdirname:
storage_fol = Path(tmpdirname)
filename = f"{video_id}.{extension}".replace("/", "_")
vid_filename = storage_fol / filename
self._create_video(
video, prompt if prompt_on_vid else None, vid_filename, append_video, input_flow=input_flow)
prompt_file = storage_fol / f"{video_id}.txt"
self._create_prompt_file(prompt, prompt_file, video_path_input)
if self.logger.experiment.__class__.__name__ == "_DummyExperiment":
run_fol = Path(self.logger.save_dir) / \
self.logger.experiment_id / self.logger.run_id / "artifacts" / log_folder
if not run_fol.exists():
run_fol.mkdir(parents=True, exist_ok=True)
shutil.copy(prompt_file.as_posix(),
(run_fol / f"{video_id}.txt").as_posix())
shutil.copy(vid_filename,
(run_fol / filename).as_posix())
else:
self.logger.experiment.log_artifact(
self.logger.run_id, prompt_file.as_posix(), log_folder)
self.logger.experiment.log_artifact(
self.logger.run_id, vid_filename, log_folder)
def save_to_file(self, video: torch.FloatTensor, prompt: str, video_filename: Union[str, Path], input_flow=None, conditional_video_path: str = None, prompt_on_vid: bool = True, conditional_video: torch.FloatTensor = None):
self._create_video(
video, prompt if prompt_on_vid else None, video_filename, conditional_video, input_flow=input_flow)
self._create_prompt_file(
prompt, video_filename, conditional_video_path)
def add_text_to_image(image_array, text, position, font_size, text_color, font_path=None):
# Convert the NumPy array to PIL Image
image_pil = Image.fromarray(image_array)
# Create a drawing object
draw = ImageDraw.Draw(image_pil)
if font_path is not None:
font = ImageFont.truetype(font_path, font_size)
else:
try:
# Load the font
font = ImageFont.truetype(
"/usr/share/fonts/truetype/liberation/LiberationMono-Regular.ttf", font_size)
except:
font = ImageFont.load_default()
# Draw the text on the image
draw.text(position, text, font=font, fill=text_color)
# Convert the PIL Image back to NumPy array
modified_image_array = np.array(image_pil)
return modified_image_array
def add_text_to_video(video_path, prompt):
outputs_with_overlay = []
with open(video_path, "rb") as f:
vr = VideoReader(f, ctx=cpu(0))
for i in range(len(vr)):
frame = vr[i]
frame = add_text_to_image(frame, prompt, position=(
10, 10), font_size=15, text_color=(255, 0, 0),)
outputs_with_overlay.append(frame)
outputs = outputs_with_overlay
video_path = video_path.replace("mp4", "gif")
imageio.mimsave(video_path, outputs, duration=100, loop=0)
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=30, prompt=None):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(x)
os.makedirs(os.path.dirname(path), exist_ok=True)
if prompt is not None:
outputs_with_overlay = []
for frame in outputs:
frame_out = add_text_to_image(
frame, prompt, position=(10, 10), font_size=10, text_color=(255, 0, 0),)
outputs_with_overlay.append(frame_out)
outputs = outputs_with_overlay
imageio.mimsave(path, outputs, duration=round(1/fps*1000), loop=0)
# iio.imwrite(path, outputs)
# optimize(path)
def set_channel_pos(data, shape_dict, channel_pos):
assert data.ndim == 5 or data.ndim == 4
batch_dim = data.shape[0]
frame_dim = shape_dict["frame_dim"]
channel_dim = shape_dict["channel_dim"]
width_dim = shape_dict["width_dim"]
height_dim = shape_dict["height_dim"]
assert batch_dim != frame_dim
assert channel_dim != frame_dim
assert channel_dim != batch_dim
video_shape = list(data.shape)
batch_pos = video_shape.index(batch_dim)
channel_pos = video_shape.index(channel_dim)
w_pos = video_shape.index(width_dim)
h_pos = video_shape.index(height_dim)
if w_pos == h_pos:
video_shape[w_pos] = -1
h_pos = video_shape.index(height_dim)
pattern_order = {}
pattern_order[batch_pos] = "B"
pattern_order[channel_pos] = "C"
pattern_order[w_pos] = "W"
pattern_order[h_pos] = "H"
if data.ndim == 5:
frame_pos = video_shape.index(frame_dim)
pattern_order[frame_pos] = "F"
if channel_pos == channel_first:
pattern = " -> B F C W H"
else:
pattern = " -> B F W H C"
else:
if channel_pos == channel_first:
pattern = " -> B C W H"
else:
pattern = " -> B W H C"
pattern_input = [pattern_order[idx] for idx in range(data.ndim)]
pattern_input = " ".join(pattern_input)
pattern = pattern_input + pattern
data = rearrange(data, pattern)
def merge_first_two_dimensions(tensor):
dims = tensor.ndim
letters = []
for letter_idx in range(dims-2):
letters.append(chr(letter_idx+67))
latters_pattern = " ".join(letters)
tensor = rearrange(tensor, "A B "+latters_pattern +
" -> (A B) "+latters_pattern)
# TODO merging first two dimensions might be easier with reshape so no need to create letters
# should be 'tensor.view(*tensor.shape[:2], -1)'
return tensor
def apply_spatial_function_to_video_tensor(video, shape, func):
# TODO detect batch, frame, channel, width, and height
assert video.ndim == 5
batch_dim = shape["batch_dim"]
frame_dim = shape["frame_dim"]
channel_dim = shape["channel_dim"]
width_dim = shape["width_dim"]
height_dim = shape["height_dim"]
assert batch_dim != frame_dim
assert channel_dim != frame_dim
assert channel_dim != batch_dim
video_shape = list(video.shape)
batch_pos = video_shape.index(batch_dim)
frame_pos = video_shape.index(frame_dim)
channel_pos = video_shape.index(channel_dim)
w_pos = video_shape.index(width_dim)
h_pos = video_shape.index(height_dim)
if w_pos == h_pos:
video_shape[w_pos] = -1
h_pos = video_shape.index(height_dim)
pattern_order = {}
pattern_order[batch_pos] = "B"
pattern_order[channel_pos] = "C"
pattern_order[frame_pos] = "F"
pattern_order[w_pos] = "W"
pattern_order[h_pos] = "H"
pattern_order = sorted(pattern_order.items(), key=lambda x: x[1])
pattern_order = [x[0] for x in pattern_order]
input_pattern = " ".join(pattern_order)
video = rearrange(video, input_pattern+" -> (B F) C W H")
video = func(video)
video = rearrange(video, "(B F) C W H -> "+input_pattern, F=frame_dim)
return video
def dump_frames(videos, as_mosaik, storage_fol, save_image_kwargs):
# assume videos is in format B F C H W, range [0,1]
num_frames = videos.shape[1]
num_videos = videos.shape[0]
if videos.shape[2] != 3 and videos.shape[-1] == 3:
videos = rearrange(videos, "B F W H C -> B F C W H")
frame_counter = 0
if not isinstance(storage_fol, Path):
storage_fol = Path(storage_fol)
for frame_idx in range(num_frames):
print(f" Creating frame {frame_idx}")
batch_frame = videos[:, frame_idx, ...]
if as_mosaik:
filename = storage_fol / f"frame_{frame_counter:03d}.png"
save_image(batch_frame, fp=filename.as_posix(),
**save_image_kwargs)
frame_counter += 1
else:
for video_idx in range(num_videos):
frame = batch_frame[video_idx]
filename = storage_fol / f"frame_{frame_counter:03d}.png"
save_image(frame, fp=filename.as_posix(),
**save_image_kwargs)
frame_counter += 1
def gif_from_videos(videos):
assert videos.dim() == 5
assert videos.min() >= 0
assert videos.max() <= 1
gif_file = Path("tmp.gif").absolute()
with tempfile.TemporaryDirectory() as tmpdirname:
storage_fol = Path(tmpdirname)
nrows = min(4, videos.shape[0])
dump_frames(
videos=videos, storage_fol=storage_fol, as_mosaik=True, save_image_kwargs={"nrow": nrows})
cmd = f"ffmpeg -y -f image2 -framerate 4 -i {storage_fol / 'frame_%03d.png'} {gif_file.as_posix()}"
subprocess.check_call(
cmd, shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.STDOUT)
return gif_file
def add_margin(pil_img, top, right, bottom, left, color):
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
return result
def resize_to_fit(image, size):
W, H = size
w, h = image.size
if H / h > W / w:
H_ = int(h * W / w)
W_ = W
else:
W_ = int(w * H / h)
H_ = H
return image.resize((W_, H_))
def pad_to_fit(image, size):
W, H = size
w, h = image.size
pad_h = (H - h) // 2
pad_w = (W - w) // 2
return add_margin(image, pad_h, pad_w, pad_h, pad_w, (0, 0, 0))