import gradio as gr from huggingface_hub import login from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer from threading import Thread MODEL = "m-a-p/OpenCodeInterpreter-DS-33B" system_message = "You are a computer programmer that can translate python code to C++ in order to improve performance" def user_prompt_for(python): return f"Rewrite this python code to C++. You must search for the maximum performance. \ Format your response in Markdown. This is the Code: \ \n\n\ {python}" def messages_for(python): return [ {"role": "system", "content": system_message}, {"role": "user", "content": user_prompt_for(python)} ] tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained(MODEL) streamer = TextIteratorStreamer(tokenizer) cplusplus = None def translate(python): inputs = tokenizer(messages_for(python), return_tensors="pt") generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=20) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() cplusplus = "" for chunk in streamer: cplusplus += chunk yield cplusplus demo = gr.Interface(fn=translate, inputs="code", outputs="markdown") demo.launch()