Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Configuration base class and utilities.""" | |
import copy | |
import json | |
import os | |
import re | |
import warnings | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
from packaging import version | |
from . import __version__ | |
from .dynamic_module_utils import custom_object_save | |
from .utils import ( | |
CONFIG_NAME, | |
PushToHubMixin, | |
add_model_info_to_auto_map, | |
cached_file, | |
copy_func, | |
download_url, | |
extract_commit_hash, | |
is_remote_url, | |
is_torch_available, | |
logging, | |
) | |
logger = logging.get_logger(__name__) | |
_re_configuration_file = re.compile(r"config\.(.*)\.json") | |
class PretrainedConfig(PushToHubMixin): | |
# no-format | |
r""" | |
Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as | |
methods for loading/downloading/saving configurations. | |
<Tip> | |
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to | |
initialize a model does **not** load the model weights. It only affects the model's configuration. | |
</Tip> | |
Class attributes (overridden by derived classes): | |
- **model_type** (`str`) -- An identifier for the model type, serialized into the JSON file, and used to recreate | |
the correct object in [`~transformers.AutoConfig`]. | |
- **is_composition** (`bool`) -- Whether the config class is composed of multiple sub-configs. In this case the | |
config has to be initialized from two or more configs of type [`~transformers.PretrainedConfig`] like: | |
[`~transformers.EncoderDecoderConfig`] or [`~RagConfig`]. | |
- **keys_to_ignore_at_inference** (`List[str]`) -- A list of keys to ignore by default when looking at dictionary | |
outputs of the model during inference. | |
- **attribute_map** (`Dict[str, str]`) -- A dict that maps model specific attribute names to the standardized | |
naming of attributes. | |
Common attributes (present in all subclasses): | |
- **vocab_size** (`int`) -- The number of tokens in the vocabulary, which is also the first dimension of the | |
embeddings matrix (this attribute may be missing for models that don't have a text modality like ViT). | |
- **hidden_size** (`int`) -- The hidden size of the model. | |
- **num_attention_heads** (`int`) -- The number of attention heads used in the multi-head attention layers of the | |
model. | |
- **num_hidden_layers** (`int`) -- The number of blocks in the model. | |
Arg: | |
name_or_path (`str`, *optional*, defaults to `""`): | |
Store the string that was passed to [`PreTrainedModel.from_pretrained`] or | |
[`TFPreTrainedModel.from_pretrained`] as `pretrained_model_name_or_path` if the configuration was created | |
with such a method. | |
output_hidden_states (`bool`, *optional*, defaults to `False`): | |
Whether or not the model should return all hidden-states. | |
output_attentions (`bool`, *optional*, defaults to `False`): | |
Whether or not the model should returns all attentions. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return a [`~transformers.utils.ModelOutput`] instead of a plain tuple. | |
is_encoder_decoder (`bool`, *optional*, defaults to `False`): | |
Whether the model is used as an encoder/decoder or not. | |
is_decoder (`bool`, *optional*, defaults to `False`): | |
Whether the model is used as decoder or not (in which case it's used as an encoder). | |
cross_attention_hidden_size** (`bool`, *optional*): | |
The hidden size of the cross-attention layer in case the model is used as a decoder in an encoder-decoder | |
setting and the cross-attention hidden dimension differs from `self.config.hidden_size`. | |
add_cross_attention (`bool`, *optional*, defaults to `False`): | |
Whether cross-attention layers should be added to the model. Note, this option is only relevant for models | |
that can be used as decoder models within the [`EncoderDecoderModel`] class, which consists of all models | |
in `AUTO_MODELS_FOR_CAUSAL_LM`. | |
tie_encoder_decoder (`bool`, *optional*, defaults to `False`): | |
Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder | |
and decoder model to have the exact same parameter names. | |
prune_heads (`Dict[int, List[int]]`, *optional*, defaults to `{}`): | |
Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of | |
heads to prune in said layer. | |
For instance `{1: [0, 2], 2: [2, 3]}` will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. | |
chunk_size_feed_forward (`int`, *optional*, defaults to `0`): | |
The chunk size of all feed forward layers in the residual attention blocks. A chunk size of `0` means that | |
the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes `n` < | |
sequence_length embeddings at a time. For more information on feed forward chunking, see [How does Feed | |
Forward Chunking work?](../glossary.html#feed-forward-chunking). | |
> Parameters for sequence generation | |
max_length (`int`, *optional*, defaults to 20): | |
Maximum length that will be used by default in the `generate` method of the model. | |
min_length (`int`, *optional*, defaults to 0): | |
Minimum length that will be used by default in the `generate` method of the model. | |
do_sample (`bool`, *optional*, defaults to `False`): | |
Flag that will be used by default in the `generate` method of the model. Whether or not to use sampling ; | |
use greedy decoding otherwise. | |
early_stopping (`bool`, *optional*, defaults to `False`): | |
Flag that will be used by default in the `generate` method of the model. Whether to stop the beam search | |
when at least `num_beams` sentences are finished per batch or not. | |
num_beams (`int`, *optional*, defaults to 1): | |
Number of beams for beam search that will be used by default in the `generate` method of the model. 1 means | |
no beam search. | |
num_beam_groups (`int`, *optional*, defaults to 1): | |
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams | |
that will be used by default in the `generate` method of the model. 1 means no group beam search. | |
diversity_penalty (`float`, *optional*, defaults to 0.0): | |
Value to control diversity for group beam search. that will be used by default in the `generate` method of | |
the model. 0 means no diversity penalty. The higher the penalty, the more diverse are the outputs. | |
temperature (`float`, *optional*, defaults to 1.0): | |
The value used to module the next token probabilities that will be used by default in the `generate` method | |
of the model. Must be strictly positive. | |
top_k (`int`, *optional*, defaults to 50): | |
Number of highest probability vocabulary tokens to keep for top-k-filtering that will be used by default in | |
the `generate` method of the model. | |
top_p (`float`, *optional*, defaults to 1): | |
Value that will be used by default in the `generate` method of the model for `top_p`. If set to float < 1, | |
only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. | |
typical_p (`float`, *optional*, defaults to 1): | |
Local typicality measures how similar the conditional probability of predicting a target token next is to | |
the expected conditional probability of predicting a random token next, given the partial text already | |
generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that | |
add up to `typical_p` or higher are kept for generation. See [this | |
paper](https://arxiv.org/pdf/2202.00666.pdf) for more details. | |
repetition_penalty (`float`, *optional*, defaults to 1): | |
Parameter for repetition penalty that will be used by default in the `generate` method of the model. 1.0 | |
means no penalty. | |
length_penalty (`float`, *optional*, defaults to 1): | |
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to | |
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log | |
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while | |
`length_penalty` < 0.0 encourages shorter sequences. | |
no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by default in the | |
`generate` method of the model for `no_repeat_ngram_size`. If set to int > 0, all ngrams of that size can | |
only occur once. | |
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by | |
default in the `generate` method of the model for `encoder_no_repeat_ngram_size`. If set to int > 0, all | |
ngrams of that size that occur in the `encoder_input_ids` cannot occur in the `decoder_input_ids`. | |
bad_words_ids (`List[int]`, *optional*): | |
List of token ids that are not allowed to be generated that will be used by default in the `generate` | |
method of the model. In order to get the tokens of the words that should not appear in the generated text, | |
use `tokenizer.encode(bad_word, add_prefix_space=True)`. | |
num_return_sequences (`int`, *optional*, defaults to 1): | |
Number of independently computed returned sequences for each element in the batch that will be used by | |
default in the `generate` method of the model. | |
output_scores (`bool`, *optional*, defaults to `False`): | |
Whether the model should return the logits when used for generation. | |
return_dict_in_generate (`bool`, *optional*, defaults to `False`): | |
Whether the model should return a [`~transformers.utils.ModelOutput`] instead of a `torch.LongTensor`. | |
forced_bos_token_id (`int`, *optional*): | |
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for | |
multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target | |
language token. | |
forced_eos_token_id (`int`, *optional*): | |
The id of the token to force as the last generated token when `max_length` is reached. | |
remove_invalid_values (`bool`, *optional*): | |
Whether to remove possible _nan_ and _inf_ outputs of the model to prevent the generation method to crash. | |
Note that using `remove_invalid_values` can slow down generation. | |
> Parameters for fine-tuning tasks | |
architectures (`List[str]`, *optional*): | |
Model architectures that can be used with the model pretrained weights. | |
finetuning_task (`str`, *optional*): | |
Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow | |
or PyTorch) checkpoint. | |
id2label (`Dict[int, str]`, *optional*): | |
A map from index (for instance prediction index, or target index) to label. | |
label2id (`Dict[str, int]`, *optional*): A map from label to index for the model. | |
num_labels (`int`, *optional*): | |
Number of labels to use in the last layer added to the model, typically for a classification task. | |
task_specific_params (`Dict[str, Any]`, *optional*): | |
Additional keyword arguments to store for the current task. | |
problem_type (`str`, *optional*): | |
Problem type for `XxxForSequenceClassification` models. Can be one of `"regression"`, | |
`"single_label_classification"` or `"multi_label_classification"`. | |
> Parameters linked to the tokenizer | |
tokenizer_class (`str`, *optional*): | |
The name of the associated tokenizer class to use (if none is set, will use the tokenizer associated to the | |
model by default). | |
prefix (`str`, *optional*): | |
A specific prompt that should be added at the beginning of each text before calling the model. | |
bos_token_id (`int`, *optional*): The id of the _beginning-of-stream_ token. | |
pad_token_id (`int`, *optional*): The id of the _padding_ token. | |
eos_token_id (`int`, *optional*): The id of the _end-of-stream_ token. | |
decoder_start_token_id (`int`, *optional*): | |
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token. | |
sep_token_id (`int`, *optional*): The id of the _separation_ token. | |
> PyTorch specific parameters | |
torchscript (`bool`, *optional*, defaults to `False`): | |
Whether or not the model should be used with Torchscript. | |
tie_word_embeddings (`bool`, *optional*, defaults to `True`): | |
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the | |
model has a output word embedding layer. | |
torch_dtype (`str`, *optional*): | |
The `dtype` of the weights. This attribute can be used to initialize the model to a non-default `dtype` | |
(which is normally `float32`) and thus allow for optimal storage allocation. For example, if the saved | |
model is `float16`, ideally we want to load it back using the minimal amount of memory needed to load | |
`float16` weights. Since the config object is stored in plain text, this attribute contains just the | |
floating type string without the `torch.` prefix. For example, for `torch.float16` ``torch_dtype` is the | |
`"float16"` string. | |
This attribute is currently not being used during model loading time, but this may change in the future | |
versions. But we can already start preparing for the future by saving the dtype with save_pretrained. | |
attn_implementation (`str`, *optional*): | |
The attention implementation to use in the model. Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (attention using [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (attention using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation. | |
> TensorFlow specific parameters | |
use_bfloat16 (`bool`, *optional*, defaults to `False`): | |
Whether or not the model should use BFloat16 scalars (only used by some TensorFlow models). | |
tf_legacy_loss (`bool`, *optional*, defaults to `False`): | |
Whether the model should use legacy TensorFlow losses. Legacy losses have variable output shapes and may | |
not be XLA-compatible. This option is here for backward compatibility and will be removed in Transformers | |
v5. | |
""" | |
model_type: str = "" | |
is_composition: bool = False | |
attribute_map: Dict[str, str] = {} | |
_auto_class: Optional[str] = None | |
def __setattr__(self, key, value): | |
if key in super().__getattribute__("attribute_map"): | |
key = super().__getattribute__("attribute_map")[key] | |
super().__setattr__(key, value) | |
def __getattribute__(self, key): | |
if key != "attribute_map" and key in super().__getattribute__("attribute_map"): | |
key = super().__getattribute__("attribute_map")[key] | |
return super().__getattribute__(key) | |
def __init__(self, **kwargs): | |
# Attributes with defaults | |
self.return_dict = kwargs.pop("return_dict", True) | |
self.output_hidden_states = kwargs.pop("output_hidden_states", False) | |
self.output_attentions = kwargs.pop("output_attentions", False) | |
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models | |
self.torch_dtype = kwargs.pop("torch_dtype", None) # Only used by PyTorch models | |
self.use_bfloat16 = kwargs.pop("use_bfloat16", False) | |
self.tf_legacy_loss = kwargs.pop("tf_legacy_loss", False) # Only used by TensorFlow models | |
self.pruned_heads = kwargs.pop("pruned_heads", {}) | |
self.tie_word_embeddings = kwargs.pop( | |
"tie_word_embeddings", True | |
) # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models. | |
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder | |
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False) | |
self.is_decoder = kwargs.pop("is_decoder", False) | |
self.cross_attention_hidden_size = kwargs.pop("cross_attention_hidden_size", None) | |
self.add_cross_attention = kwargs.pop("add_cross_attention", False) | |
self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False) | |
# Parameters for sequence generation | |
self.max_length = kwargs.pop("max_length", 20) | |
self.min_length = kwargs.pop("min_length", 0) | |
self.do_sample = kwargs.pop("do_sample", False) | |
self.early_stopping = kwargs.pop("early_stopping", False) | |
self.num_beams = kwargs.pop("num_beams", 1) | |
self.num_beam_groups = kwargs.pop("num_beam_groups", 1) | |
self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0) | |
self.temperature = kwargs.pop("temperature", 1.0) | |
self.top_k = kwargs.pop("top_k", 50) | |
self.top_p = kwargs.pop("top_p", 1.0) | |
self.typical_p = kwargs.pop("typical_p", 1.0) | |
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0) | |
self.length_penalty = kwargs.pop("length_penalty", 1.0) | |
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0) | |
self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0) | |
self.bad_words_ids = kwargs.pop("bad_words_ids", None) | |
self.num_return_sequences = kwargs.pop("num_return_sequences", 1) | |
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0) | |
self.output_scores = kwargs.pop("output_scores", False) | |
self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False) | |
self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None) | |
self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None) | |
self.remove_invalid_values = kwargs.pop("remove_invalid_values", False) | |
self.exponential_decay_length_penalty = kwargs.pop("exponential_decay_length_penalty", None) | |
self.suppress_tokens = kwargs.pop("suppress_tokens", None) | |
self.begin_suppress_tokens = kwargs.pop("begin_suppress_tokens", None) | |
# Fine-tuning task arguments | |
self.architectures = kwargs.pop("architectures", None) | |
self.finetuning_task = kwargs.pop("finetuning_task", None) | |
self.id2label = kwargs.pop("id2label", None) | |
self.label2id = kwargs.pop("label2id", None) | |
if self.label2id is not None and not isinstance(self.label2id, dict): | |
raise ValueError("Argument label2id should be a dictionary.") | |
if self.id2label is not None: | |
if not isinstance(self.id2label, dict): | |
raise ValueError("Argument id2label should be a dictionary.") | |
num_labels = kwargs.pop("num_labels", None) | |
if num_labels is not None and len(self.id2label) != num_labels: | |
logger.warning( | |
f"You passed along `num_labels={num_labels}` with an incompatible id to label map: " | |
f"{self.id2label}. The number of labels wil be overwritten to {self.num_labels}." | |
) | |
self.id2label = {int(key): value for key, value in self.id2label.items()} | |
# Keys are always strings in JSON so convert ids to int here. | |
else: | |
self.num_labels = kwargs.pop("num_labels", 2) | |
if self.torch_dtype is not None and isinstance(self.torch_dtype, str): | |
# we will start using self.torch_dtype in v5, but to be consistent with | |
# from_pretrained's torch_dtype arg convert it to an actual torch.dtype object | |
if is_torch_available(): | |
import torch | |
self.torch_dtype = getattr(torch, self.torch_dtype) | |
# Tokenizer arguments TODO: eventually tokenizer and models should share the same config | |
self.tokenizer_class = kwargs.pop("tokenizer_class", None) | |
self.prefix = kwargs.pop("prefix", None) | |
self.bos_token_id = kwargs.pop("bos_token_id", None) | |
self.pad_token_id = kwargs.pop("pad_token_id", None) | |
self.eos_token_id = kwargs.pop("eos_token_id", None) | |
self.sep_token_id = kwargs.pop("sep_token_id", None) | |
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None) | |
# task specific arguments | |
self.task_specific_params = kwargs.pop("task_specific_params", None) | |
# regression / multi-label classification | |
self.problem_type = kwargs.pop("problem_type", None) | |
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification") | |
if self.problem_type is not None and self.problem_type not in allowed_problem_types: | |
raise ValueError( | |
f"The config parameter `problem_type` was not understood: received {self.problem_type} " | |
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid." | |
) | |
# TPU arguments | |
if kwargs.pop("xla_device", None) is not None: | |
logger.warning( | |
"The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can " | |
"safely remove it from your `config.json` file." | |
) | |
# Name or path to the pretrained checkpoint | |
self._name_or_path = str(kwargs.pop("name_or_path", "")) | |
# Config hash | |
self._commit_hash = kwargs.pop("_commit_hash", None) | |
# Attention implementation to use, if relevant. | |
self._attn_implementation_internal = kwargs.pop("attn_implementation", None) | |
# Drop the transformers version info | |
self.transformers_version = kwargs.pop("transformers_version", None) | |
# Deal with gradient checkpointing | |
if kwargs.get("gradient_checkpointing", False): | |
warnings.warn( | |
"Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 " | |
"Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the " | |
"`Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`." | |
) | |
# Additional attributes without default values | |
for key, value in kwargs.items(): | |
try: | |
setattr(self, key, value) | |
except AttributeError as err: | |
logger.error(f"Can't set {key} with value {value} for {self}") | |
raise err | |
def name_or_path(self) -> str: | |
return getattr(self, "_name_or_path", None) | |
def name_or_path(self, value): | |
self._name_or_path = str(value) # Make sure that name_or_path is a string (for JSON encoding) | |
def use_return_dict(self) -> bool: | |
""" | |
`bool`: Whether or not return [`~utils.ModelOutput`] instead of tuples. | |
""" | |
# If torchscript is set, force `return_dict=False` to avoid jit errors | |
return self.return_dict and not self.torchscript | |
def num_labels(self) -> int: | |
""" | |
`int`: The number of labels for classification models. | |
""" | |
return len(self.id2label) | |
def num_labels(self, num_labels: int): | |
if not hasattr(self, "id2label") or self.id2label is None or len(self.id2label) != num_labels: | |
self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)} | |
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys())) | |
def _attn_implementation(self): | |
# This property is made private for now (as it cannot be changed and a PreTrainedModel.use_attn_implementation method needs to be implemented.) | |
if hasattr(self, "_attn_implementation_internal"): | |
if self._attn_implementation_internal is None: | |
# `config.attn_implementation` should never be None, for backward compatibility. | |
return "eager" | |
else: | |
return self._attn_implementation_internal | |
else: | |
return "eager" | |
def _attn_implementation(self, value): | |
self._attn_implementation_internal = value | |
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): | |
""" | |
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the | |
[`~PretrainedConfig.from_pretrained`] class method. | |
Args: | |
save_directory (`str` or `os.PathLike`): | |
Directory where the configuration JSON file will be saved (will be created if it does not exist). | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the | |
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your | |
namespace). | |
kwargs (`Dict[str, Any]`, *optional*): | |
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. | |
""" | |
self._set_token_in_kwargs(kwargs) | |
if os.path.isfile(save_directory): | |
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") | |
os.makedirs(save_directory, exist_ok=True) | |
if push_to_hub: | |
commit_message = kwargs.pop("commit_message", None) | |
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) | |
repo_id = self._create_repo(repo_id, **kwargs) | |
files_timestamps = self._get_files_timestamps(save_directory) | |
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be | |
# loaded from the Hub. | |
if self._auto_class is not None: | |
custom_object_save(self, save_directory, config=self) | |
# If we save using the predefined names, we can load using `from_pretrained` | |
output_config_file = os.path.join(save_directory, CONFIG_NAME) | |
self.to_json_file(output_config_file, use_diff=True) | |
logger.info(f"Configuration saved in {output_config_file}") | |
if push_to_hub: | |
self._upload_modified_files( | |
save_directory, | |
repo_id, | |
files_timestamps, | |
commit_message=commit_message, | |
token=kwargs.get("token"), | |
) | |
def _set_token_in_kwargs(kwargs, token=None): | |
"""Temporary method to deal with `token` and `use_auth_token`. | |
This method is to avoid apply the same changes in all model config classes that overwrite `from_pretrained`. | |
Need to clean up `use_auth_token` in a follow PR. | |
""" | |
# Some model config classes like CLIP define their own `from_pretrained` without the new argument `token` yet. | |
if token is None: | |
token = kwargs.pop("token", None) | |
use_auth_token = kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", | |
FutureWarning, | |
) | |
if token is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
token = use_auth_token | |
if token is not None: | |
kwargs["token"] = token | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Union[str, os.PathLike], | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
force_download: bool = False, | |
local_files_only: bool = False, | |
token: Optional[Union[str, bool]] = None, | |
revision: str = "main", | |
**kwargs, | |
) -> "PretrainedConfig": | |
r""" | |
Instantiate a [`PretrainedConfig`] (or a derived class) from a pretrained model configuration. | |
Args: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
This can be either: | |
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on | |
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or | |
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. | |
- a path to a *directory* containing a configuration file saved using the | |
[`~PretrainedConfig.save_pretrained`] method, e.g., `./my_model_directory/`. | |
- a path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`. | |
cache_dir (`str` or `os.PathLike`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
standard cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force to (re-)download the configuration files and override the cached versions if | |
they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received file. Attempts to resume the download if such a file | |
exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
token (`str` or `bool`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use | |
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
<Tip> | |
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>". | |
</Tip> | |
return_unused_kwargs (`bool`, *optional*, defaults to `False`): | |
If `False`, then this function returns just the final configuration object. | |
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a | |
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the | |
part of `kwargs` which has not been used to update `config` and is otherwise ignored. | |
subfolder (`str`, *optional*, defaults to `""`): | |
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can | |
specify the folder name here. | |
kwargs (`Dict[str, Any]`, *optional*): | |
The values in kwargs of any keys which are configuration attributes will be used to override the loaded | |
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled | |
by the `return_unused_kwargs` keyword parameter. | |
Returns: | |
[`PretrainedConfig`]: The configuration object instantiated from this pretrained model. | |
Examples: | |
```python | |
# We can't instantiate directly the base class *PretrainedConfig* so let's show the examples on a | |
# derived class: BertConfig | |
config = BertConfig.from_pretrained( | |
"bert-base-uncased" | |
) # Download configuration from huggingface.co and cache. | |
config = BertConfig.from_pretrained( | |
"./test/saved_model/" | |
) # E.g. config (or model) was saved using *save_pretrained('./test/saved_model/')* | |
config = BertConfig.from_pretrained("./test/saved_model/my_configuration.json") | |
config = BertConfig.from_pretrained("bert-base-uncased", output_attentions=True, foo=False) | |
assert config.output_attentions == True | |
config, unused_kwargs = BertConfig.from_pretrained( | |
"bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True | |
) | |
assert config.output_attentions == True | |
assert unused_kwargs == {"foo": False} | |
```""" | |
kwargs["cache_dir"] = cache_dir | |
kwargs["force_download"] = force_download | |
kwargs["local_files_only"] = local_files_only | |
kwargs["revision"] = revision | |
cls._set_token_in_kwargs(kwargs, token) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
def get_config_dict( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> Tuple[Dict[str, Any], Dict[str, Any]]: | |
""" | |
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a | |
[`PretrainedConfig`] using `from_dict`. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. | |
Returns: | |
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object. | |
""" | |
cls._set_token_in_kwargs(kwargs) | |
original_kwargs = copy.deepcopy(kwargs) | |
# Get config dict associated with the base config file | |
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs) | |
if "_commit_hash" in config_dict: | |
original_kwargs["_commit_hash"] = config_dict["_commit_hash"] | |
# That config file may point us toward another config file to use. | |
if "configuration_files" in config_dict: | |
configuration_file = get_configuration_file(config_dict["configuration_files"]) | |
config_dict, kwargs = cls._get_config_dict( | |
pretrained_model_name_or_path, _configuration_file=configuration_file, **original_kwargs | |
) | |
return config_dict, kwargs | |
def _get_config_dict( | |
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs | |
) -> Tuple[Dict[str, Any], Dict[str, Any]]: | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
trust_remote_code = kwargs.pop("trust_remote_code", None) | |
subfolder = kwargs.pop("subfolder", "") | |
from_pipeline = kwargs.pop("_from_pipeline", None) | |
from_auto_class = kwargs.pop("_from_auto", False) | |
commit_hash = kwargs.pop("_commit_hash", None) | |
if trust_remote_code is True: | |
logger.warning( | |
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" | |
" ignored." | |
) | |
user_agent = {"file_type": "config", "from_auto_class": from_auto_class} | |
if from_pipeline is not None: | |
user_agent["using_pipeline"] = from_pipeline | |
pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
is_local = os.path.isdir(pretrained_model_name_or_path) | |
if os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)): | |
# Special case when pretrained_model_name_or_path is a local file | |
resolved_config_file = pretrained_model_name_or_path | |
is_local = True | |
elif is_remote_url(pretrained_model_name_or_path): | |
configuration_file = pretrained_model_name_or_path | |
resolved_config_file = download_url(pretrained_model_name_or_path) | |
else: | |
configuration_file = kwargs.pop("_configuration_file", CONFIG_NAME) | |
try: | |
# Load from local folder or from cache or download from model Hub and cache | |
resolved_config_file = cached_file( | |
pretrained_model_name_or_path, | |
configuration_file, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
revision=revision, | |
subfolder=subfolder, | |
_commit_hash=commit_hash, | |
) | |
commit_hash = extract_commit_hash(resolved_config_file, commit_hash) | |
except EnvironmentError: | |
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to | |
# the original exception. | |
raise | |
except Exception: | |
# For any other exception, we throw a generic error. | |
raise EnvironmentError( | |
f"Can't load the configuration of '{pretrained_model_name_or_path}'. If you were trying to load it" | |
" from 'https://huggingface.co/models', make sure you don't have a local directory with the same" | |
f" name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory" | |
f" containing a {configuration_file} file" | |
) | |
try: | |
# Load config dict | |
config_dict = cls._dict_from_json_file(resolved_config_file) | |
config_dict["_commit_hash"] = commit_hash | |
except (json.JSONDecodeError, UnicodeDecodeError): | |
raise EnvironmentError( | |
f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file." | |
) | |
if is_local: | |
logger.info(f"loading configuration file {resolved_config_file}") | |
else: | |
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}") | |
if "auto_map" in config_dict and not is_local: | |
config_dict["auto_map"] = add_model_info_to_auto_map( | |
config_dict["auto_map"], pretrained_model_name_or_path | |
) | |
return config_dict, kwargs | |
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig": | |
""" | |
Instantiates a [`PretrainedConfig`] from a Python dictionary of parameters. | |
Args: | |
config_dict (`Dict[str, Any]`): | |
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be | |
retrieved from a pretrained checkpoint by leveraging the [`~PretrainedConfig.get_config_dict`] method. | |
kwargs (`Dict[str, Any]`): | |
Additional parameters from which to initialize the configuration object. | |
Returns: | |
[`PretrainedConfig`]: The configuration object instantiated from those parameters. | |
""" | |
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) | |
# Those arguments may be passed along for our internal telemetry. | |
# We remove them so they don't appear in `return_unused_kwargs`. | |
kwargs.pop("_from_auto", None) | |
kwargs.pop("_from_pipeline", None) | |
# The commit hash might have been updated in the `config_dict`, we don't want the kwargs to erase that update. | |
if "_commit_hash" in kwargs and "_commit_hash" in config_dict: | |
kwargs["_commit_hash"] = config_dict["_commit_hash"] | |
# We remove it from kwargs so that it does not appear in `return_unused_kwargs`. | |
config_dict["attn_implementation"] = kwargs.pop("attn_implementation", None) | |
config = cls(**config_dict) | |
if hasattr(config, "pruned_heads"): | |
config.pruned_heads = {int(key): value for key, value in config.pruned_heads.items()} | |
# Update config with kwargs if needed | |
if "num_labels" in kwargs and "id2label" in kwargs: | |
num_labels = kwargs["num_labels"] | |
id2label = kwargs["id2label"] if kwargs["id2label"] is not None else [] | |
if len(id2label) != num_labels: | |
raise ValueError( | |
f"You passed along `num_labels={num_labels }` with an incompatible id to label map: " | |
f"{kwargs['id2label']}. Since those arguments are inconsistent with each other, you should remove " | |
"one of them." | |
) | |
to_remove = [] | |
for key, value in kwargs.items(): | |
if hasattr(config, key): | |
current_attr = getattr(config, key) | |
# To authorize passing a custom subconfig as kwarg in models that have nested configs. | |
if isinstance(current_attr, PretrainedConfig) and isinstance(value, dict): | |
value = current_attr.__class__(**value) | |
setattr(config, key, value) | |
if key != "torch_dtype": | |
to_remove.append(key) | |
for key in to_remove: | |
kwargs.pop(key, None) | |
logger.info(f"Model config {config}") | |
if return_unused_kwargs: | |
return config, kwargs | |
else: | |
return config | |
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig": | |
""" | |
Instantiates a [`PretrainedConfig`] from the path to a JSON file of parameters. | |
Args: | |
json_file (`str` or `os.PathLike`): | |
Path to the JSON file containing the parameters. | |
Returns: | |
[`PretrainedConfig`]: The configuration object instantiated from that JSON file. | |
""" | |
config_dict = cls._dict_from_json_file(json_file) | |
return cls(**config_dict) | |
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]): | |
with open(json_file, "r", encoding="utf-8") as reader: | |
text = reader.read() | |
return json.loads(text) | |
def __eq__(self, other): | |
return isinstance(other, PretrainedConfig) and (self.__dict__ == other.__dict__) | |
def __repr__(self): | |
return f"{self.__class__.__name__} {self.to_json_string()}" | |
def to_diff_dict(self) -> Dict[str, Any]: | |
""" | |
Removes all attributes from config which correspond to the default config attributes for better readability and | |
serializes to a Python dictionary. | |
Returns: | |
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
config_dict = self.to_dict() | |
# get the default config dict | |
default_config_dict = PretrainedConfig().to_dict() | |
# get class specific config dict | |
class_config_dict = self.__class__().to_dict() if not self.is_composition else {} | |
serializable_config_dict = {} | |
# only serialize values that differ from the default config | |
for key, value in config_dict.items(): | |
if ( | |
isinstance(getattr(self, key, None), PretrainedConfig) | |
and key in class_config_dict | |
and isinstance(class_config_dict[key], dict) | |
): | |
# For nested configs we need to clean the diff recursively | |
diff = recursive_diff_dict(value, class_config_dict[key], config_obj=getattr(self, key, None)) | |
if "model_type" in value: | |
# Needs to be set even if it's not in the diff | |
diff["model_type"] = value["model_type"] | |
if len(diff) > 0: | |
serializable_config_dict[key] = diff | |
elif ( | |
key not in default_config_dict | |
or key == "transformers_version" | |
or value != default_config_dict[key] | |
or (key in class_config_dict and value != class_config_dict[key]) | |
): | |
serializable_config_dict[key] = value | |
if hasattr(self, "quantization_config"): | |
serializable_config_dict["quantization_config"] = ( | |
self.quantization_config.to_dict() | |
if not isinstance(self.quantization_config, dict) | |
else self.quantization_config | |
) | |
# pop the `_pre_quantization_dtype` as torch.dtypes are not serializable. | |
_ = serializable_config_dict.pop("_pre_quantization_dtype", None) | |
self.dict_torch_dtype_to_str(serializable_config_dict) | |
if "_attn_implementation_internal" in serializable_config_dict: | |
del serializable_config_dict["_attn_implementation_internal"] | |
return serializable_config_dict | |
def to_dict(self) -> Dict[str, Any]: | |
""" | |
Serializes this instance to a Python dictionary. | |
Returns: | |
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. | |
""" | |
output = copy.deepcopy(self.__dict__) | |
if hasattr(self.__class__, "model_type"): | |
output["model_type"] = self.__class__.model_type | |
if "_auto_class" in output: | |
del output["_auto_class"] | |
if "_commit_hash" in output: | |
del output["_commit_hash"] | |
if "_attn_implementation_internal" in output: | |
del output["_attn_implementation_internal"] | |
# Transformers version when serializing the model | |
output["transformers_version"] = __version__ | |
for key, value in output.items(): | |
# Deal with nested configs like CLIP | |
if isinstance(value, PretrainedConfig): | |
value = value.to_dict() | |
del value["transformers_version"] | |
output[key] = value | |
if hasattr(self, "quantization_config"): | |
output["quantization_config"] = ( | |
self.quantization_config.to_dict() | |
if not isinstance(self.quantization_config, dict) | |
else self.quantization_config | |
) | |
# pop the `_pre_quantization_dtype` as torch.dtypes are not serializable. | |
_ = output.pop("_pre_quantization_dtype", None) | |
self.dict_torch_dtype_to_str(output) | |
return output | |
def to_json_string(self, use_diff: bool = True) -> str: | |
""" | |
Serializes this instance to a JSON string. | |
Args: | |
use_diff (`bool`, *optional*, defaults to `True`): | |
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` | |
is serialized to JSON string. | |
Returns: | |
`str`: String containing all the attributes that make up this configuration instance in JSON format. | |
""" | |
if use_diff is True: | |
config_dict = self.to_diff_dict() | |
else: | |
config_dict = self.to_dict() | |
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" | |
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True): | |
""" | |
Save this instance to a JSON file. | |
Args: | |
json_file_path (`str` or `os.PathLike`): | |
Path to the JSON file in which this configuration instance's parameters will be saved. | |
use_diff (`bool`, *optional*, defaults to `True`): | |
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` | |
is serialized to JSON file. | |
""" | |
with open(json_file_path, "w", encoding="utf-8") as writer: | |
writer.write(self.to_json_string(use_diff=use_diff)) | |
def update(self, config_dict: Dict[str, Any]): | |
""" | |
Updates attributes of this class with attributes from `config_dict`. | |
Args: | |
config_dict (`Dict[str, Any]`): Dictionary of attributes that should be updated for this class. | |
""" | |
for key, value in config_dict.items(): | |
setattr(self, key, value) | |
def update_from_string(self, update_str: str): | |
""" | |
Updates attributes of this class with attributes from `update_str`. | |
The expected format is ints, floats and strings as is, and for booleans use `true` or `false`. For example: | |
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" | |
The keys to change have to already exist in the config object. | |
Args: | |
update_str (`str`): String with attributes that should be updated for this class. | |
""" | |
d = dict(x.split("=") for x in update_str.split(",")) | |
for k, v in d.items(): | |
if not hasattr(self, k): | |
raise ValueError(f"key {k} isn't in the original config dict") | |
old_v = getattr(self, k) | |
if isinstance(old_v, bool): | |
if v.lower() in ["true", "1", "y", "yes"]: | |
v = True | |
elif v.lower() in ["false", "0", "n", "no"]: | |
v = False | |
else: | |
raise ValueError(f"can't derive true or false from {v} (key {k})") | |
elif isinstance(old_v, int): | |
v = int(v) | |
elif isinstance(old_v, float): | |
v = float(v) | |
elif not isinstance(old_v, str): | |
raise ValueError( | |
f"You can only update int, float, bool or string values in the config, got {v} for key {k}" | |
) | |
setattr(self, k, v) | |
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None: | |
""" | |
Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None, | |
converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"* | |
string, which can then be stored in the json format. | |
""" | |
if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str): | |
d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1] | |
for value in d.values(): | |
if isinstance(value, dict): | |
self.dict_torch_dtype_to_str(value) | |
def register_for_auto_class(cls, auto_class="AutoConfig"): | |
""" | |
Register this class with a given auto class. This should only be used for custom configurations as the ones in | |
the library are already mapped with `AutoConfig`. | |
<Tip warning={true}> | |
This API is experimental and may have some slight breaking changes in the next releases. | |
</Tip> | |
Args: | |
auto_class (`str` or `type`, *optional*, defaults to `"AutoConfig"`): | |
The auto class to register this new configuration with. | |
""" | |
if not isinstance(auto_class, str): | |
auto_class = auto_class.__name__ | |
import transformers.models.auto as auto_module | |
if not hasattr(auto_module, auto_class): | |
raise ValueError(f"{auto_class} is not a valid auto class.") | |
cls._auto_class = auto_class | |
def get_configuration_file(configuration_files: List[str]) -> str: | |
""" | |
Get the configuration file to use for this version of transformers. | |
Args: | |
configuration_files (`List[str]`): The list of available configuration files. | |
Returns: | |
`str`: The configuration file to use. | |
""" | |
configuration_files_map = {} | |
for file_name in configuration_files: | |
search = _re_configuration_file.search(file_name) | |
if search is not None: | |
v = search.groups()[0] | |
configuration_files_map[v] = file_name | |
available_versions = sorted(configuration_files_map.keys()) | |
# Defaults to FULL_CONFIGURATION_FILE and then try to look at some newer versions. | |
configuration_file = CONFIG_NAME | |
transformers_version = version.parse(__version__) | |
for v in available_versions: | |
if version.parse(v) <= transformers_version: | |
configuration_file = configuration_files_map[v] | |
else: | |
# No point going further since the versions are sorted. | |
break | |
return configuration_file | |
def recursive_diff_dict(dict_a, dict_b, config_obj=None): | |
""" | |
Helper function to recursively take the diff between two nested dictionaries. The resulting diff only contains the | |
values from `dict_a` that are different from values in `dict_b`. | |
""" | |
diff = {} | |
default = config_obj.__class__().to_dict() if config_obj is not None else {} | |
for key, value in dict_a.items(): | |
obj_value = getattr(config_obj, str(key), None) | |
if isinstance(obj_value, PretrainedConfig) and key in dict_b and isinstance(dict_b[key], dict): | |
diff_value = recursive_diff_dict(value, dict_b[key], config_obj=obj_value) | |
if len(diff_value) > 0: | |
diff[key] = diff_value | |
elif key not in dict_b or value != dict_b[key] or key not in default or value != default[key]: | |
diff[key] = value | |
return diff | |
PretrainedConfig.push_to_hub = copy_func(PretrainedConfig.push_to_hub) | |
if PretrainedConfig.push_to_hub.__doc__ is not None: | |
PretrainedConfig.push_to_hub.__doc__ = PretrainedConfig.push_to_hub.__doc__.format( | |
object="config", object_class="AutoConfig", object_files="configuration file" | |
) | |