Spaces:
Runtime error
Runtime error
# This file is autogenerated by the command `make fix-copies`, do not edit. | |
from ..utils import DummyObject, requires_backends | |
class PyTorchBenchmark(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PyTorchBenchmarkArguments(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Cache(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DynamicCache(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SinkCache(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GlueDataset(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GlueDataTrainingArguments(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LineByLineTextDataset(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LineByLineWithRefDataset(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LineByLineWithSOPTextDataset(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SquadDataset(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SquadDataTrainingArguments(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TextDataset(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TextDatasetForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlternatingCodebooksLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BeamScorer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BeamSearchScorer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClassifierFreeGuidanceLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConstrainedBeamSearchScorer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Constraint(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConstraintListState(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DisjunctiveConstraint(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EncoderNoRepeatNGramLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EncoderRepetitionPenaltyLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EpsilonLogitsWarper(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EtaLogitsWarper(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ExponentialDecayLengthPenalty(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ForcedBOSTokenLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ForcedEOSTokenLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ForceTokensLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GenerationMixin(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class HammingDiversityLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class InfNanRemoveLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LogitNormalization(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LogitsProcessorList(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LogitsWarper(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MaxLengthCriteria(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MaxTimeCriteria(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MinLengthLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MinNewTokensLengthLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NoBadWordsLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NoRepeatNGramLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PhrasalConstraint(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PrefixConstrainedLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RepetitionPenaltyLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SequenceBiasLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class StoppingCriteria(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class StoppingCriteriaList(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SuppressTokensAtBeginLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SuppressTokensLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TemperatureLogitsWarper(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TopKLogitsWarper(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TopPLogitsWarper(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TypicalLogitsWarper(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UnbatchedClassifierFreeGuidanceLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WhisperTimeStampLogitsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def top_k_top_p_filtering(*args, **kwargs): | |
requires_backends(top_k_top_p_filtering, ["torch"]) | |
class PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class AlbertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlbertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlbertForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlbertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlbertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlbertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlbertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlbertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_albert(*args, **kwargs): | |
requires_backends(load_tf_weights_in_albert, ["torch"]) | |
ALIGN_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class AlignModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlignPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlignTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AlignVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class AltCLIPModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AltCLIPPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AltCLIPTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AltCLIPVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ASTForAudioClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ASTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ASTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None | |
MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING = None | |
MODEL_FOR_AUDIO_XVECTOR_MAPPING = None | |
MODEL_FOR_BACKBONE_MAPPING = None | |
MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING = None | |
MODEL_FOR_CAUSAL_LM_MAPPING = None | |
MODEL_FOR_CTC_MAPPING = None | |
MODEL_FOR_DEPTH_ESTIMATION_MAPPING = None | |
MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING = None | |
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None | |
MODEL_FOR_IMAGE_SEGMENTATION_MAPPING = None | |
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING = None | |
MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING = None | |
MODEL_FOR_MASK_GENERATION_MAPPING = None | |
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING = None | |
MODEL_FOR_MASKED_LM_MAPPING = None | |
MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None | |
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None | |
MODEL_FOR_OBJECT_DETECTION_MAPPING = None | |
MODEL_FOR_PRETRAINING_MAPPING = None | |
MODEL_FOR_QUESTION_ANSWERING_MAPPING = None | |
MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING = None | |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None | |
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None | |
MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None | |
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING = None | |
MODEL_FOR_TEXT_ENCODING_MAPPING = None | |
MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING = None | |
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING = None | |
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING = None | |
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING = None | |
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None | |
MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING = None | |
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING = None | |
MODEL_FOR_VISION_2_SEQ_MAPPING = None | |
MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING = None | |
MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING = None | |
MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING = None | |
MODEL_MAPPING = None | |
MODEL_WITH_LM_HEAD_MAPPING = None | |
class AutoBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForAudioClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForAudioFrameClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForAudioXVector(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForDepthEstimation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForDocumentQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForImageSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForImageToImage(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForInstanceSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForMaskGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForSeq2SeqLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForSpeechSeq2Seq(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForTableQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForTextEncoding(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForTextToSpectrogram(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForTextToWaveform(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForUniversalSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForVideoClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForVision2Seq(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForVisualQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForZeroShotImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelForZeroShotObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoModelWithLMHead(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class AutoformerForPrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AutoformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BARK_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BarkCausalModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BarkCoarseModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BarkFineModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BarkModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BarkPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BarkSemanticModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BART_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BartForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BartForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BartForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BartForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BartModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BartPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BartPretrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PretrainedBartModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BeitBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BeitForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BeitForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BeitForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BeitModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BeitPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertLMHeadModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_bert(*args, **kwargs): | |
requires_backends(load_tf_weights_in_bert, ["torch"]) | |
class BertGenerationDecoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertGenerationEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BertGenerationPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_bert_generation(*args, **kwargs): | |
requires_backends(load_tf_weights_in_bert_generation, ["torch"]) | |
BIG_BIRD_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BigBirdForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_big_bird(*args, **kwargs): | |
requires_backends(load_tf_weights_in_big_bird, ["torch"]) | |
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BigBirdPegasusForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdPegasusForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdPegasusForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdPegasusForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdPegasusModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BigBirdPegasusPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BioGptForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BioGptForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BioGptForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BioGptModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BioGptPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BitBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BitForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BitModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BitPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BlenderbotForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlenderbotForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlenderbotModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlenderbotPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BlenderbotSmallForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlenderbotSmallForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlenderbotSmallModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlenderbotSmallPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BlipForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlipForImageTextRetrieval(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlipForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlipModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlipPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlipTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BlipVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Blip2ForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Blip2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Blip2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Blip2QFormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Blip2VisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BloomForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BloomForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BloomForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BloomForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BloomModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BloomPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BridgeTowerForContrastiveLearning(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BridgeTowerForImageAndTextRetrieval(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BridgeTowerForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BridgeTowerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BridgeTowerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
BROS_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class BrosForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BrosModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BrosPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BrosProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BrosSpadeEEForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class BrosSpadeELForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class CamembertForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CamembertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CamembertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CamembertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CamembertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CamembertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CamembertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CamembertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class CanineForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CanineForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CanineForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CanineForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CanineLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CanineModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CaninePreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_canine(*args, **kwargs): | |
requires_backends(load_tf_weights_in_canine, ["torch"]) | |
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ChineseCLIPModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ChineseCLIPPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ChineseCLIPTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ChineseCLIPVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ClapAudioModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClapAudioModelWithProjection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClapFeatureExtractor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClapModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClapPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClapTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClapTextModelWithProjection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class CLIPModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CLIPPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CLIPTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CLIPTextModelWithProjection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CLIPVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CLIPVisionModelWithProjection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class CLIPSegForImageSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CLIPSegModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CLIPSegPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CLIPSegTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CLIPSegVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CLVP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ClvpDecoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClvpEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClvpForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClvpModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClvpModelForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ClvpPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CODEGEN_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class CodeGenForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CodeGenModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CodeGenPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ConditionalDetrForObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConditionalDetrForSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConditionalDetrModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConditionalDetrPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ConvBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvBertLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_convbert(*args, **kwargs): | |
requires_backends(load_tf_weights_in_convbert, ["torch"]) | |
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ConvNextBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvNextForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvNextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvNextPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ConvNextV2Backbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvNextV2ForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvNextV2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ConvNextV2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class CpmAntForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CpmAntModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CpmAntPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class CTRLForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CTRLLMHeadModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CTRLModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CTRLPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
CVT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class CvtForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CvtModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class CvtPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Data2VecAudioForAudioFrameClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecAudioForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecAudioForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecAudioForXVector(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecAudioModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecAudioPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecTextForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecTextForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecTextForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecTextForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecTextForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecTextForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecTextPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecVisionForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecVisionForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Data2VecVisionPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DebertaForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DebertaV2ForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaV2ForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaV2ForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaV2ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaV2ForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaV2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DebertaV2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DecisionTransformerGPT2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DecisionTransformerGPT2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DecisionTransformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DecisionTransformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DeformableDetrForObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DeformableDetrModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DeformableDetrPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DeiTForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DeiTForImageClassificationWithTeacher(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DeiTForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DeiTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DeiTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MCTCTForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MCTCTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MCTCTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MMBTForClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MMBTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ModalEmbeddings(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OpenLlamaForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OpenLlamaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OpenLlamaModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OpenLlamaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class RetriBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RetriBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TrajectoryTransformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TrajectoryTransformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class AdaptiveEmbedding(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TransfoXLForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TransfoXLLMHeadModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TransfoXLModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TransfoXLPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_transfo_xl(*args, **kwargs): | |
requires_backends(load_tf_weights_in_transfo_xl, ["torch"]) | |
VAN_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class VanForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VanModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VanPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DETA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DetaForObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DetaModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DetaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DetrForObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DetrForSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DetrModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DetrPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DINAT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DinatBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DinatForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DinatModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DinatPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DINOV2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Dinov2Backbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Dinov2ForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Dinov2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Dinov2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DistilBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DistilBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DistilBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DistilBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DistilBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DistilBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DistilBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DonutSwinModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DonutSwinPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DPRContextEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DPRPretrainedContextEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DPRPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DPRPretrainedQuestionEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DPRPretrainedReader(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DPRQuestionEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DPRReader(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
DPT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class DPTForDepthEstimation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DPTForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DPTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class DPTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class EfficientFormerForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EfficientFormerForImageClassificationWithTeacher(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EfficientFormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EfficientFormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class EfficientNetForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EfficientNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EfficientNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ElectraForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ElectraForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ElectraForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ElectraForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ElectraForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ElectraForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ElectraForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ElectraModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ElectraPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_electra(*args, **kwargs): | |
requires_backends(load_tf_weights_in_electra, ["torch"]) | |
ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class EncodecModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EncodecPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EncoderDecoderModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ErnieForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErniePreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ErnieMForInformationExtraction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieMForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieMForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieMForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieMForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieMModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ErnieMPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ESM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class EsmFoldPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EsmForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EsmForProteinFolding(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EsmForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EsmForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EsmModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class EsmPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class FalconForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FalconForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FalconForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FalconForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FalconModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FalconPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class FlaubertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlaubertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlaubertForQuestionAnsweringSimple(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlaubertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlaubertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlaubertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlaubertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlaubertWithLMHeadModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class FlavaForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlavaImageCodebook(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlavaImageModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlavaModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlavaMultimodalModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlavaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FlavaTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
FNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class FNetForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FNetForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FNetForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FNetForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FNetForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FNetForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FNetForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FNetLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class FocalNetBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FocalNetForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FocalNetForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FocalNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FocalNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FSMTForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FSMTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PretrainedFSMTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class FunnelBaseModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FunnelForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FunnelForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FunnelForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FunnelForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FunnelForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FunnelForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FunnelModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FunnelPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_funnel(*args, **kwargs): | |
requires_backends(load_tf_weights_in_funnel, ["torch"]) | |
class FuyuForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class FuyuPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
GIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GitForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GitModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GitPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GitVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GLPNForDepthEstimation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GLPNModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GLPNPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GPT2DoubleHeadsModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPT2ForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPT2ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPT2ForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPT2LMHeadModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPT2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPT2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_gpt2(*args, **kwargs): | |
requires_backends(load_tf_weights_in_gpt2, ["torch"]) | |
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GPTBigCodeForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTBigCodeForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTBigCodeForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTBigCodeModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTBigCodePreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GPTNeoForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_gpt_neo(*args, **kwargs): | |
requires_backends(load_tf_weights_in_gpt_neo, ["torch"]) | |
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GPTNeoXForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoXForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoXForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoXForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoXLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoXModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoXPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GPTNeoXJapaneseForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoXJapaneseLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoXJapaneseModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTNeoXJapanesePreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GPTJForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTJForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTJForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTJModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTJPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GPTSanJapaneseForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTSanJapaneseModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GPTSanJapanesePreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GraphormerForGraphClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GraphormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GraphormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class GroupViTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GroupViTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GroupViTTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class GroupViTVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class HubertForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class HubertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class HubertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class HubertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
IBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class IBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class IBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class IBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class IBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class IBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class IBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class IBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class IdeficsForVisionText2Text(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class IdeficsModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class IdeficsPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class IdeficsProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
IMAGEGPT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ImageGPTForCausalImageModeling(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ImageGPTForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ImageGPTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ImageGPTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_imagegpt(*args, **kwargs): | |
requires_backends(load_tf_weights_in_imagegpt, ["torch"]) | |
INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class InformerForPrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class InformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class InformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class InstructBlipForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class InstructBlipPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class InstructBlipQFormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class InstructBlipVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class JukeboxModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class JukeboxPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class JukeboxPrior(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class JukeboxVQVAE(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
KOSMOS2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Kosmos2ForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Kosmos2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Kosmos2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LayoutLMForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LayoutLMv2ForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMv2ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMv2ForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMv2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMv2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LayoutLMv3ForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMv3ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMv3ForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMv3Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LayoutLMv3PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LED_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LEDForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LEDForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LEDForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LEDModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LEDPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LevitForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LevitForImageClassificationWithTeacher(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LevitModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LevitPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LILT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LiltForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LiltForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LiltForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LiltModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LiltPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LlamaForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LlamaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LlamaModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LlamaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LlavaForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LlavaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LlavaProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LongformerForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongformerForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongformerForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongformerForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongformerForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongformerSelfAttention(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LongT5EncoderModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongT5ForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongT5Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LongT5PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class LukeForEntityClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LukeForEntityPairClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LukeForEntitySpanClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LukeForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LukeForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LukeForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LukeForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LukeForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LukeModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LukePreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LxmertEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LxmertForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LxmertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LxmertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LxmertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LxmertVisualFeatureEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class LxmertXLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class M2M100ForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class M2M100Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class M2M100PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MarianForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MarianModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MarianMTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MARKUPLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MarkupLMForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MarkupLMForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MarkupLMForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MarkupLMModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MarkupLMPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Mask2FormerForUniversalSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Mask2FormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Mask2FormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MaskFormerForInstanceSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MaskFormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MaskFormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MaskFormerSwinBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MBartForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MBartForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MBartForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MBartForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MBartModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MBartPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MegaForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegaForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegaForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegaForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegaForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegaModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MegatronBertForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegatronBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegatronBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegatronBertForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegatronBertForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegatronBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegatronBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegatronBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegatronBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MegatronBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MgpstrForSceneTextRecognition(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MgpstrModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MgpstrPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MistralForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MistralForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MistralModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MistralPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MixtralForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MixtralForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MixtralModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MixtralPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MobileBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileBertForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileBertForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileBertLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_mobilebert(*args, **kwargs): | |
requires_backends(load_tf_weights_in_mobilebert, ["torch"]) | |
MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MobileNetV1ForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileNetV1Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileNetV1PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_mobilenet_v1(*args, **kwargs): | |
requires_backends(load_tf_weights_in_mobilenet_v1, ["torch"]) | |
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MobileNetV2ForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileNetV2ForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileNetV2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileNetV2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_mobilenet_v2(*args, **kwargs): | |
requires_backends(load_tf_weights_in_mobilenet_v2, ["torch"]) | |
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MobileViTForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileViTForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileViTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileViTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MobileViTV2ForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileViTV2ForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileViTV2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MobileViTV2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MPNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MPNetForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MPNetForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MPNetForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MPNetForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MPNetForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MPNetLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MPNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MPNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MPT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MptForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MptForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MptForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MptForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MptModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MptPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MRA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MraForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MraForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MraForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MraForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MraForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MraModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MraPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MT5EncoderModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MT5ForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MT5ForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MT5ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MT5Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MT5PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MusicgenForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MusicgenForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MusicgenModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MusicgenPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MusicgenProcessor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
MVP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class MvpForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MvpForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MvpForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MvpForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MvpModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class MvpPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
NAT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class NatBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NatForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NatModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NatPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class NezhaForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NezhaForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NezhaForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NezhaForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NezhaForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NezhaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NezhaForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NezhaModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NezhaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class NllbMoeForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NllbMoeModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NllbMoePreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NllbMoeSparseMLP(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NllbMoeTop2Router(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class NystromformerForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NystromformerForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NystromformerForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NystromformerForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NystromformerForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NystromformerLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NystromformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class NystromformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class OneFormerForUniversalSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OneFormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OneFormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class OpenAIGPTDoubleHeadsModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OpenAIGPTForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OpenAIGPTLMHeadModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OpenAIGPTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OpenAIGPTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_openai_gpt(*args, **kwargs): | |
requires_backends(load_tf_weights_in_openai_gpt, ["torch"]) | |
OPT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class OPTForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OPTForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OPTForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OPTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OPTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Owlv2ForObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Owlv2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Owlv2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Owlv2TextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Owlv2VisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class OwlViTForObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OwlViTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OwlViTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OwlViTTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class OwlViTVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
PATCHTSMIXER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class PatchTSMixerForPrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSMixerForPretraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSMixerForRegression(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSMixerForTimeSeriesClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSMixerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSMixerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class PatchTSTForClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSTForPrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSTForPretraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSTForRegression(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PatchTSTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PegasusForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PegasusForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PegasusModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PegasusPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class PegasusXForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PegasusXModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PegasusXPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class PerceiverForImageClassificationConvProcessing(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PerceiverForImageClassificationFourier(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PerceiverForImageClassificationLearned(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PerceiverForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PerceiverForMultimodalAutoencoding(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PerceiverForOpticalFlow(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PerceiverForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PerceiverLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PerceiverModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PerceiverPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PersimmonForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PersimmonForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PersimmonModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PersimmonPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
PHI_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class PhiForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PhiForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PhiForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PhiModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PhiPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Pix2StructForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Pix2StructPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Pix2StructTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Pix2StructVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class PLBartForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PLBartForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PLBartForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PLBartModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PLBartPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class PoolFormerForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PoolFormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PoolFormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Pop2PianoForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Pop2PianoPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ProphetNetDecoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ProphetNetEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ProphetNetForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ProphetNetForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ProphetNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ProphetNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
PVT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class PvtForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PvtModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class PvtPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
QDQBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class QDQBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class QDQBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class QDQBertForNextSentencePrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class QDQBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class QDQBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class QDQBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class QDQBertLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class QDQBertLMHeadModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class QDQBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class QDQBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_qdqbert(*args, **kwargs): | |
requires_backends(load_tf_weights_in_qdqbert, ["torch"]) | |
class RagModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RagPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RagSequenceForGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RagTokenForGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
REALM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class RealmEmbedder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RealmForOpenQA(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RealmKnowledgeAugEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RealmPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RealmReader(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RealmRetriever(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RealmScorer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_realm(*args, **kwargs): | |
requires_backends(load_tf_weights_in_realm, ["torch"]) | |
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ReformerAttention(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ReformerForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ReformerForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ReformerForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ReformerLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ReformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ReformerModelWithLMHead(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ReformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class RegNetForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RegNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RegNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class RemBertForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RemBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RemBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RemBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RemBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RemBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RemBertLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RemBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RemBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_rembert(*args, **kwargs): | |
requires_backends(load_tf_weights_in_rembert, ["torch"]) | |
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ResNetBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ResNetForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ResNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ResNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class RobertaForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class RobertaPreLayerNormForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaPreLayerNormForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaPreLayerNormForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaPreLayerNormForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaPreLayerNormForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaPreLayerNormForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaPreLayerNormModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RobertaPreLayerNormPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class RoCBertForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoCBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoCBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoCBertForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoCBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoCBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoCBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoCBertLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoCBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoCBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_roc_bert(*args, **kwargs): | |
requires_backends(load_tf_weights_in_roc_bert, ["torch"]) | |
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class RoFormerForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoFormerForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoFormerForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoFormerForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoFormerForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoFormerForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoFormerLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoFormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RoFormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_roformer(*args, **kwargs): | |
requires_backends(load_tf_weights_in_roformer, ["torch"]) | |
RWKV_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class RwkvForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RwkvModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class RwkvPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SAM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SamModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SamPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SEAMLESS_M4T_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SeamlessM4TCodeHifiGan(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4TForSpeechToSpeech(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4TForSpeechToText(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4TForTextToSpeech(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4TForTextToText(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4THifiGan(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4TModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4TPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4TTextToUnitForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4TTextToUnitModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SeamlessM4Tv2ForSpeechToSpeech(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4Tv2ForSpeechToText(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4Tv2ForTextToSpeech(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4Tv2ForTextToText(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4Tv2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SeamlessM4Tv2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SegformerDecodeHead(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SegformerForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SegformerForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SegformerLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SegformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SegformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SEW_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SEWForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SEWForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SEWModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SEWPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SEW_D_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SEWDForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SEWDForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SEWDModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SEWDPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SpeechEncoderDecoderModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Speech2TextForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Speech2TextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Speech2TextPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Speech2Text2ForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Speech2Text2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SpeechT5ForSpeechToSpeech(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SpeechT5ForSpeechToText(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SpeechT5ForTextToSpeech(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SpeechT5HifiGan(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SpeechT5Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SpeechT5PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SPLINTER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SplinterForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SplinterForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SplinterLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SplinterModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SplinterPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SqueezeBertForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SqueezeBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SqueezeBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SqueezeBertForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SqueezeBertForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SqueezeBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SqueezeBertModule(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SqueezeBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SwiftFormerForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwiftFormerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwiftFormerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SWIN_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SwinBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwinForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwinForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwinModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwinPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SWIN2SR_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Swin2SRForImageSuperResolution(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Swin2SRModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Swin2SRPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Swinv2ForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Swinv2ForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Swinv2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Swinv2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class SwitchTransformersEncoderModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwitchTransformersForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwitchTransformersModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwitchTransformersPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwitchTransformersSparseMLP(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class SwitchTransformersTop1Router(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
T5_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class T5EncoderModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class T5ForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class T5ForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class T5ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class T5Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class T5PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_t5(*args, **kwargs): | |
requires_backends(load_tf_weights_in_t5, ["torch"]) | |
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TableTransformerForObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TableTransformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TableTransformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TapasForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TapasForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TapasForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TapasModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TapasPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_tapas(*args, **kwargs): | |
requires_backends(load_tf_weights_in_tapas, ["torch"]) | |
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TimeSeriesTransformerForPrediction(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TimeSeriesTransformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TimeSeriesTransformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TimesformerForVideoClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TimesformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TimesformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TimmBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
TROCR_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TrOCRForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TrOCRPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
TVLT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TvltForAudioVisualClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TvltForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TvltModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TvltPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
TVP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class TvpForVideoGrounding(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TvpModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class TvpPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UMT5EncoderModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UMT5ForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UMT5ForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UMT5ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UMT5Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UMT5PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class UniSpeechForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
UNISPEECH_SAT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class UniSpeechSatForAudioFrameClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechSatForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechSatForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechSatForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechSatForXVector(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechSatModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UniSpeechSatPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
UNIVNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class UnivNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UperNetForSemanticSegmentation(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class UperNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class VideoMAEForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VideoMAEForVideoClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VideoMAEModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VideoMAEPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VILT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ViltForImageAndTextRetrieval(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViltForImagesAndTextClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViltForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViltForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViltForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViltLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViltModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViltPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VisionEncoderDecoderModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VisionTextDualEncoderModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VISUAL_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class VisualBertForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VisualBertForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VisualBertForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VisualBertForRegionToPhraseAlignment(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VisualBertForVisualReasoning(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VisualBertLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VisualBertModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VisualBertPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ViTForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTForMaskedImageModeling(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ViTHybridForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTHybridModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTHybridPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ViTMAEForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTMAELayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTMAEModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTMAEPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class ViTMSNForImageClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTMSNModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class ViTMSNPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VITDET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class VitDetBackbone(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VitDetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VitDetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class VitMatteForImageMatting(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VitMattePreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VITS_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class VitsModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VitsPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class VivitForVideoClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VivitModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class VivitPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Wav2Vec2ForAudioFrameClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ForXVector(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2Model(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2PreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
WAV2VEC2_CONFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class Wav2Vec2ConformerForAudioFrameClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ConformerForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ConformerForPreTraining(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ConformerForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ConformerForXVector(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ConformerModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Wav2Vec2ConformerPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class WavLMForAudioFrameClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WavLMForCTC(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WavLMForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WavLMForXVector(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WavLMModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WavLMPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class WhisperForAudioClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WhisperForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WhisperForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WhisperModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class WhisperPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class XCLIPModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XCLIPPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XCLIPTextModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XCLIPVisionModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
XGLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class XGLMForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XGLMModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XGLMPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
XLM_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class XLMForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMForQuestionAnsweringSimple(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMWithLMHeadModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class XLMProphetNetDecoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMProphetNetEncoder(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMProphetNetForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMProphetNetForConditionalGeneration(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMProphetNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMProphetNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class XLMRobertaForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class XLMRobertaXLForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaXLForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaXLForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaXLForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaXLForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaXLForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaXLModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLMRobertaXLPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class XLNetForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLNetForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLNetForQuestionAnsweringSimple(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLNetForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLNetForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLNetLMHeadModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLNetModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XLNetPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def load_tf_weights_in_xlnet(*args, **kwargs): | |
requires_backends(load_tf_weights_in_xlnet, ["torch"]) | |
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class XmodForCausalLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XmodForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XmodForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XmodForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XmodForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XmodForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XmodModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class XmodPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class YolosForObjectDetection(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class YolosModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class YolosPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
YOSO_PRETRAINED_MODEL_ARCHIVE_LIST = None | |
class YosoForMaskedLM(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class YosoForMultipleChoice(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class YosoForQuestionAnswering(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class YosoForSequenceClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class YosoForTokenClassification(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class YosoLayer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class YosoModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class YosoPreTrainedModel(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class Adafactor(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
class AdamW(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def get_constant_schedule(*args, **kwargs): | |
requires_backends(get_constant_schedule, ["torch"]) | |
def get_constant_schedule_with_warmup(*args, **kwargs): | |
requires_backends(get_constant_schedule_with_warmup, ["torch"]) | |
def get_cosine_schedule_with_warmup(*args, **kwargs): | |
requires_backends(get_cosine_schedule_with_warmup, ["torch"]) | |
def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs): | |
requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["torch"]) | |
def get_inverse_sqrt_schedule(*args, **kwargs): | |
requires_backends(get_inverse_sqrt_schedule, ["torch"]) | |
def get_linear_schedule_with_warmup(*args, **kwargs): | |
requires_backends(get_linear_schedule_with_warmup, ["torch"]) | |
def get_polynomial_decay_schedule_with_warmup(*args, **kwargs): | |
requires_backends(get_polynomial_decay_schedule_with_warmup, ["torch"]) | |
def get_scheduler(*args, **kwargs): | |
requires_backends(get_scheduler, ["torch"]) | |
class Conv1D(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def apply_chunking_to_forward(*args, **kwargs): | |
requires_backends(apply_chunking_to_forward, ["torch"]) | |
def prune_layer(*args, **kwargs): | |
requires_backends(prune_layer, ["torch"]) | |
class Trainer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |
def torch_distributed_zero_first(*args, **kwargs): | |
requires_backends(torch_distributed_zero_first, ["torch"]) | |
class Seq2SeqTrainer(metaclass=DummyObject): | |
_backends = ["torch"] | |
def __init__(self, *args, **kwargs): | |
requires_backends(self, ["torch"]) | |