import os env_var = os.environ.get('env') import torch import time import numpy as np import gradio as gr from PIL import Image import torchvision from torchvision import transforms device = 'cpu' model = torch.load('model.pkl').to(device).eval() transform = transforms.Resize(size=500) labels = ['Cat', 'Dog'] def predict(image): start = time.time() with torch.no_grad(): image = Image.fromarray(np.uint8(image)).convert('RGB') image = transform(image) image = np.array(image) image = torch.from_numpy(image).permute(2,0,1).float() image = image.unsqueeze(0) prediction = model(image.to(device)) pred_idx = np.argmax(prediction.to(device)) pred_label = "Cat" if pred_idx == 0 else "Dog" label = [l for l in labels if l!=pred_label] confidences = {pred_label: float(prediction[0][pred_idx])/100, label[len(label)-1]: 1-(float(prediction[0][pred_idx]))/100 } infer = time.time()-start return confidences, infer gr.Interface(fn=predict, inputs=gr.Image(), outputs=[gr.Label(num_top_classes=3), gr.Textbox('infer',label='Inference Time')], examples='1.jpg cat.jpg'.split(' ')).launch()