Spaces:
Runtime error
Runtime error
import torch | |
from models.common import DetectMultiBackend | |
from torchvision import transforms | |
import gradio as gr | |
import requests | |
from PIL import Image | |
weights='/content/drive/MyDrive/yolov5/yolov5s-cls.pt' | |
model = DetectMultiBackend(weights) | |
# load imagenet 1000 labels | |
response = requests.get("https://git.io/JJkYN") | |
labels = response.text.split("\n") | |
def preprocess_image(inp): | |
# Define the preprocessing steps | |
preprocess = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
# Apply the preprocessing steps to the image | |
image = preprocess(inp) | |
# Convert the image to a PyTorch tensor | |
image = torch.tensor(image).unsqueeze(0) | |
return image | |
def predict(inp): | |
with torch.no_grad(): | |
prediction = torch.nn.functional.softmax(model(preprocess_image(inp))[0], dim=0) | |
print(prediction) | |
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} | |
return confidences | |
gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs="label",labels=labels).launch(debug=True) | |
#outputs=gr.Label(num_top_classes=5)) |