File size: 12,469 Bytes
3f7cfab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import asyncio
import collections
from typing import Any, Dict, List, Optional, OrderedDict, Tuple
import gradio_client # type: ignore
from h2ogpt_client import enums
class Client:
def __init__(self, server_url: str, huggingface_token: Optional[str] = None):
self._client = gradio_client.Client(
src=server_url, hf_token=huggingface_token, serialize=False, verbose=False
)
self._text_completion = TextCompletion(self)
self._chat_completion = ChatCompletion(self)
@property
def text_completion(self) -> "TextCompletion":
return self._text_completion
@property
def chat_completion(self) -> "ChatCompletion":
return self._chat_completion
def _predict(self, *args, api_name: str) -> Any:
return self._client.submit(*args, api_name=api_name).result()
async def _predict_async(self, *args, api_name: str) -> str:
return await asyncio.wrap_future(self._client.submit(*args, api_name=api_name))
class TextCompletion:
"""Text completion"""
def __init__(self, client: Client):
self._client = client
def create(
self,
prompt: str,
prompt_type: enums.PromptType = enums.PromptType.plain,
input_context_for_instruction: str = "",
enable_sampler=False,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = 40,
beams: float = 1.0,
early_stopping: bool = False,
min_output_length: int = 0,
max_output_length: int = 128,
max_time: int = 180,
repetition_penalty: float = 1.07,
number_returns: int = 1,
system_pre_context: str = "",
langchain_mode: enums.LangChainMode = enums.LangChainMode.DISABLED,
) -> str:
"""
Creates a new text completion.
:param prompt: text prompt to generate completions for
:param prompt_type: type of the prompt
:param input_context_for_instruction: input context for instruction
:param enable_sampler: enable or disable the sampler, required for use of
temperature, top_p, top_k
:param temperature: What sampling temperature to use, between 0 and 3.
Lower values will make it more focused and deterministic, but may lead
to repeat. Higher values will make the output more creative, but may
lead to hallucinations.
:param top_p: cumulative probability of tokens to sample from
:param top_k: number of tokens to sample from
:param beams: Number of searches for optimal overall probability.
Higher values uses more GPU memory and compute.
:param early_stopping: whether to stop early or not in beam search
:param min_output_length: minimum output length
:param max_output_length: maximum output length
:param max_time: maximum time to search optimal output
:param repetition_penalty: penalty for repetition
:param number_returns:
:param system_pre_context: directly pre-appended without prompt processing
:param langchain_mode: LangChain mode
:return: response from the model
"""
# Not exposed parameters.
instruction = "" # empty when chat_mode is False
input = "" # only chat_mode is True
stream_output = False
prompt_dict = "" # empty as prompt_type cannot be 'custom'
chat_mode = False
langchain_top_k_docs = 4 # number of document chunks; not public
langchain_enable_chunk = True # whether to chunk documents; not public
langchain_chunk_size = 512 # chunk size for document chunking; not public
langchain_document_choice = ["All"]
return self._client._predict(
instruction,
input,
system_pre_context,
stream_output,
prompt_type.value,
prompt_dict,
temperature,
top_p,
top_k,
beams,
max_output_length,
min_output_length,
early_stopping,
max_time,
repetition_penalty,
number_returns,
enable_sampler,
chat_mode,
prompt,
input_context_for_instruction,
langchain_mode.value,
langchain_top_k_docs,
langchain_enable_chunk,
langchain_chunk_size,
langchain_document_choice,
api_name="/submit_nochat",
)
async def create_async(
self,
prompt: str,
prompt_type: enums.PromptType = enums.PromptType.plain,
input_context_for_instruction: str = "",
enable_sampler=False,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = 40,
beams: float = 1.0,
early_stopping: bool = False,
min_output_length: int = 0,
max_output_length: int = 128,
max_time: int = 180,
repetition_penalty: float = 1.07,
number_returns: int = 1,
system_pre_context: str = "",
langchain_mode: enums.LangChainMode = enums.LangChainMode.DISABLED,
) -> str:
"""
Creates a new text completion asynchronously.
:param prompt: text prompt to generate completions for
:param prompt_type: type of the prompt
:param input_context_for_instruction: input context for instruction
:param enable_sampler: enable or disable the sampler, required for use of
temperature, top_p, top_k
:param temperature: What sampling temperature to use, between 0 and 3.
Lower values will make it more focused and deterministic, but may lead
to repeat. Higher values will make the output more creative, but may
lead to hallucinations.
:param top_p: cumulative probability of tokens to sample from
:param top_k: number of tokens to sample from
:param beams: Number of searches for optimal overall probability.
Higher values uses more GPU memory and compute.
:param early_stopping: whether to stop early or not in beam search
:param min_output_length: minimum output length
:param max_output_length: maximum output length
:param max_time: maximum time to search optimal output
:param repetition_penalty: penalty for repetition
:param number_returns:
:param system_pre_context: directly pre-appended without prompt processing
:param langchain_mode: LangChain mode
:return: response from the model
"""
# Not exposed parameters.
instruction = "" # empty when chat_mode is False
input = "" # only chat_mode is True
stream_output = False
prompt_dict = "" # empty as prompt_type cannot be 'custom'
chat_mode = False
langchain_top_k_docs = 4 # number of document chunks; not public
langchain_enable_chunk = True # whether to chunk documents; not public
langchain_chunk_size = 512 # chunk size for document chunking; not public
langchain_document_choice = ["All"] # not public
return await self._client._predict_async(
instruction,
input,
system_pre_context,
stream_output,
prompt_type.value,
prompt_dict,
temperature,
top_p,
top_k,
beams,
max_output_length,
min_output_length,
early_stopping,
max_time,
repetition_penalty,
number_returns,
enable_sampler,
chat_mode,
prompt,
input_context_for_instruction,
langchain_mode.value,
langchain_top_k_docs,
langchain_enable_chunk,
langchain_chunk_size,
langchain_document_choice,
api_name="/submit_nochat",
)
class ChatCompletion:
"""Chat completion"""
def __init__(self, client: Client):
self._client = client
def create(
self,
prompt_type: enums.PromptType = enums.PromptType.plain,
input_context_for_instruction: str = "",
enable_sampler=False,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = 40,
beams: float = 1.0,
early_stopping: bool = False,
min_output_length: int = 0,
max_output_length: int = 128,
max_time: int = 180,
repetition_penalty: float = 1.07,
number_returns: int = 1,
system_pre_context: str = "",
langchain_mode: enums.LangChainMode = enums.LangChainMode.DISABLED,
) -> "ChatContext":
"""
Creates a new text completion asynchronously.
:param prompt_type: type of the prompt
:param input_context_for_instruction: input context for instruction
:param enable_sampler: enable or disable the sampler, required for use of
temperature, top_p, top_k
:param temperature: What sampling temperature to use, between 0 and 3.
Lower values will make it more focused and deterministic, but may lead
to repeat. Higher values will make the output more creative, but may
lead to hallucinations.
:param top_p: cumulative probability of tokens to sample from
:param top_k: number of tokens to sample from
:param beams: Number of searches for optimal overall probability.
Higher values uses more GPU memory and compute.
:param early_stopping: whether to stop early or not in beam search
:param min_output_length: minimum output length
:param max_output_length: maximum output length
:param max_time: maximum time to search optimal output
:param repetition_penalty: penalty for repetition
:param number_returns:
:param system_pre_context: directly pre-appended without prompt processing
:param langchain_mode: LangChain mode
:return: a chat context with given parameters
"""
kwargs = collections.OrderedDict(
instruction=None, # future prompts
input="", # ??
system_pre_context=system_pre_context,
stream_output=False,
prompt_type=prompt_type.value,
prompt_dict="", # empty as prompt_type cannot be 'custom'
temperature=temperature,
top_p=top_p,
top_k=top_k,
beams=beams,
max_output_length=max_output_length,
min_output_length=min_output_length,
early_stopping=early_stopping,
max_time=max_time,
repetition_penalty=repetition_penalty,
number_returns=number_returns,
enable_sampler=enable_sampler,
chat_mode=True,
instruction_nochat="", # empty when chat_mode is True
input_context_for_instruction=input_context_for_instruction,
langchain_mode=langchain_mode.value,
langchain_top_k_docs=4, # number of document chunks; not public
langchain_enable_chunk=True, # whether to chunk documents; not public
langchain_chunk_size=512, # chunk size for document chunking; not public
langchain_document_choice=["All"], # not public
chatbot=[], # chat history
)
return ChatContext(self._client, kwargs)
class ChatContext:
""" "Chat context"""
def __init__(self, client: Client, kwargs: OrderedDict[str, Any]):
self._client = client
self._kwargs = kwargs
def chat(self, prompt: str) -> Dict[str, str]:
"""
Chat with the GPT.
:param prompt: text prompt to generate completions for
:returns chat reply
"""
self._kwargs["instruction"] = prompt
self._kwargs["chatbot"] += [[prompt, None]]
response: Tuple[List[List[str]], str] = self._client._predict(
*self._kwargs.values(), api_name="/instruction_bot"
)
self._kwargs["chatbot"][-1][1] = response[0][-1][1]
return {"user": response[0][-1][0], "gpt": response[0][-1][1]}
def chat_history(self) -> List[Dict[str, str]]:
"""Returns the full chat history."""
return [{"user": i[0], "gpt": i[1]} for i in self._kwargs["chatbot"]]
|