File size: 12,469 Bytes
3f7cfab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import asyncio
import collections
from typing import Any, Dict, List, Optional, OrderedDict, Tuple

import gradio_client  # type: ignore

from h2ogpt_client import enums


class Client:
    def __init__(self, server_url: str, huggingface_token: Optional[str] = None):
        self._client = gradio_client.Client(
            src=server_url, hf_token=huggingface_token, serialize=False, verbose=False
        )
        self._text_completion = TextCompletion(self)
        self._chat_completion = ChatCompletion(self)

    @property
    def text_completion(self) -> "TextCompletion":
        return self._text_completion

    @property
    def chat_completion(self) -> "ChatCompletion":
        return self._chat_completion

    def _predict(self, *args, api_name: str) -> Any:
        return self._client.submit(*args, api_name=api_name).result()

    async def _predict_async(self, *args, api_name: str) -> str:
        return await asyncio.wrap_future(self._client.submit(*args, api_name=api_name))


class TextCompletion:
    """Text completion"""

    def __init__(self, client: Client):
        self._client = client

    def create(
        self,
        prompt: str,
        prompt_type: enums.PromptType = enums.PromptType.plain,
        input_context_for_instruction: str = "",
        enable_sampler=False,
        temperature: float = 1.0,
        top_p: float = 1.0,
        top_k: int = 40,
        beams: float = 1.0,
        early_stopping: bool = False,
        min_output_length: int = 0,
        max_output_length: int = 128,
        max_time: int = 180,
        repetition_penalty: float = 1.07,
        number_returns: int = 1,
        system_pre_context: str = "",
        langchain_mode: enums.LangChainMode = enums.LangChainMode.DISABLED,
    ) -> str:
        """
        Creates a new text completion.

        :param prompt: text prompt to generate completions for
        :param prompt_type: type of the prompt
        :param input_context_for_instruction: input context for instruction
        :param enable_sampler: enable or disable the sampler, required for use of
                temperature, top_p, top_k
        :param temperature: What sampling temperature to use, between 0 and 3.
                Lower values will make it more focused and deterministic, but may lead
                to repeat. Higher values will make the output more creative, but may
                lead to hallucinations.
        :param top_p: cumulative probability of tokens to sample from
        :param top_k: number of tokens to sample from
        :param beams: Number of searches for optimal overall probability.
                Higher values uses more GPU memory and compute.
        :param early_stopping: whether to stop early or not in beam search
        :param min_output_length: minimum output length
        :param max_output_length: maximum output length
        :param max_time: maximum time to search optimal output
        :param repetition_penalty: penalty for repetition
        :param number_returns:
        :param system_pre_context: directly pre-appended without prompt processing
        :param langchain_mode: LangChain mode
        :return: response from the model
        """
        # Not exposed parameters.
        instruction = ""  # empty when chat_mode is False
        input = ""  # only chat_mode is True
        stream_output = False
        prompt_dict = ""  # empty as prompt_type cannot be 'custom'
        chat_mode = False
        langchain_top_k_docs = 4  # number of document chunks; not public
        langchain_enable_chunk = True  # whether to chunk documents; not public
        langchain_chunk_size = 512  # chunk size for document chunking; not public
        langchain_document_choice = ["All"]

        return self._client._predict(
            instruction,
            input,
            system_pre_context,
            stream_output,
            prompt_type.value,
            prompt_dict,
            temperature,
            top_p,
            top_k,
            beams,
            max_output_length,
            min_output_length,
            early_stopping,
            max_time,
            repetition_penalty,
            number_returns,
            enable_sampler,
            chat_mode,
            prompt,
            input_context_for_instruction,
            langchain_mode.value,
            langchain_top_k_docs,
            langchain_enable_chunk,
            langchain_chunk_size,
            langchain_document_choice,
            api_name="/submit_nochat",
        )

    async def create_async(
        self,
        prompt: str,
        prompt_type: enums.PromptType = enums.PromptType.plain,
        input_context_for_instruction: str = "",
        enable_sampler=False,
        temperature: float = 1.0,
        top_p: float = 1.0,
        top_k: int = 40,
        beams: float = 1.0,
        early_stopping: bool = False,
        min_output_length: int = 0,
        max_output_length: int = 128,
        max_time: int = 180,
        repetition_penalty: float = 1.07,
        number_returns: int = 1,
        system_pre_context: str = "",
        langchain_mode: enums.LangChainMode = enums.LangChainMode.DISABLED,
    ) -> str:
        """
        Creates a new text completion asynchronously.

        :param prompt: text prompt to generate completions for
        :param prompt_type: type of the prompt
        :param input_context_for_instruction: input context for instruction
        :param enable_sampler: enable or disable the sampler, required for use of
                temperature, top_p, top_k
        :param temperature: What sampling temperature to use, between 0 and 3.
                Lower values will make it more focused and deterministic, but may lead
                to repeat. Higher values will make the output more creative, but may
                lead to hallucinations.
        :param top_p: cumulative probability of tokens to sample from
        :param top_k: number of tokens to sample from
        :param beams: Number of searches for optimal overall probability.
                Higher values uses more GPU memory and compute.
        :param early_stopping: whether to stop early or not in beam search
        :param min_output_length: minimum output length
        :param max_output_length: maximum output length
        :param max_time: maximum time to search optimal output
        :param repetition_penalty: penalty for repetition
        :param number_returns:
        :param system_pre_context: directly pre-appended without prompt processing
        :param langchain_mode: LangChain mode
        :return: response from the model
        """
        # Not exposed parameters.
        instruction = ""  # empty when chat_mode is False
        input = ""  # only chat_mode is True
        stream_output = False
        prompt_dict = ""  # empty as prompt_type cannot be 'custom'
        chat_mode = False
        langchain_top_k_docs = 4  # number of document chunks; not public
        langchain_enable_chunk = True  # whether to chunk documents; not public
        langchain_chunk_size = 512  # chunk size for document chunking; not public
        langchain_document_choice = ["All"]  # not public

        return await self._client._predict_async(
            instruction,
            input,
            system_pre_context,
            stream_output,
            prompt_type.value,
            prompt_dict,
            temperature,
            top_p,
            top_k,
            beams,
            max_output_length,
            min_output_length,
            early_stopping,
            max_time,
            repetition_penalty,
            number_returns,
            enable_sampler,
            chat_mode,
            prompt,
            input_context_for_instruction,
            langchain_mode.value,
            langchain_top_k_docs,
            langchain_enable_chunk,
            langchain_chunk_size,
            langchain_document_choice,
            api_name="/submit_nochat",
        )


class ChatCompletion:
    """Chat completion"""

    def __init__(self, client: Client):
        self._client = client

    def create(
        self,
        prompt_type: enums.PromptType = enums.PromptType.plain,
        input_context_for_instruction: str = "",
        enable_sampler=False,
        temperature: float = 1.0,
        top_p: float = 1.0,
        top_k: int = 40,
        beams: float = 1.0,
        early_stopping: bool = False,
        min_output_length: int = 0,
        max_output_length: int = 128,
        max_time: int = 180,
        repetition_penalty: float = 1.07,
        number_returns: int = 1,
        system_pre_context: str = "",
        langchain_mode: enums.LangChainMode = enums.LangChainMode.DISABLED,
    ) -> "ChatContext":
        """
        Creates a new text completion asynchronously.

        :param prompt_type: type of the prompt
        :param input_context_for_instruction: input context for instruction
        :param enable_sampler: enable or disable the sampler, required for use of
                temperature, top_p, top_k
        :param temperature: What sampling temperature to use, between 0 and 3.
                Lower values will make it more focused and deterministic, but may lead
                to repeat. Higher values will make the output more creative, but may
                lead to hallucinations.
        :param top_p: cumulative probability of tokens to sample from
        :param top_k: number of tokens to sample from
        :param beams: Number of searches for optimal overall probability.
                Higher values uses more GPU memory and compute.
        :param early_stopping: whether to stop early or not in beam search
        :param min_output_length: minimum output length
        :param max_output_length: maximum output length
        :param max_time: maximum time to search optimal output
        :param repetition_penalty: penalty for repetition
        :param number_returns:
        :param system_pre_context: directly pre-appended without prompt processing
        :param langchain_mode: LangChain mode
        :return: a chat context with given parameters
        """
        kwargs = collections.OrderedDict(
            instruction=None,  # future prompts
            input="",  # ??
            system_pre_context=system_pre_context,
            stream_output=False,
            prompt_type=prompt_type.value,
            prompt_dict="",  # empty as prompt_type cannot be 'custom'
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            beams=beams,
            max_output_length=max_output_length,
            min_output_length=min_output_length,
            early_stopping=early_stopping,
            max_time=max_time,
            repetition_penalty=repetition_penalty,
            number_returns=number_returns,
            enable_sampler=enable_sampler,
            chat_mode=True,
            instruction_nochat="",  # empty when chat_mode is True
            input_context_for_instruction=input_context_for_instruction,
            langchain_mode=langchain_mode.value,
            langchain_top_k_docs=4,  # number of document chunks; not public
            langchain_enable_chunk=True,  # whether to chunk documents; not public
            langchain_chunk_size=512,  # chunk size for document chunking; not public
            langchain_document_choice=["All"],  # not public
            chatbot=[],  # chat history
        )
        return ChatContext(self._client, kwargs)


class ChatContext:
    """ "Chat context"""

    def __init__(self, client: Client, kwargs: OrderedDict[str, Any]):
        self._client = client
        self._kwargs = kwargs

    def chat(self, prompt: str) -> Dict[str, str]:
        """
        Chat with the GPT.

        :param prompt: text prompt to generate completions for
        :returns chat reply
        """
        self._kwargs["instruction"] = prompt
        self._kwargs["chatbot"] += [[prompt, None]]
        response: Tuple[List[List[str]], str] = self._client._predict(
            *self._kwargs.values(), api_name="/instruction_bot"
        )
        self._kwargs["chatbot"][-1][1] = response[0][-1][1]
        return {"user": response[0][-1][0], "gpt": response[0][-1][1]}

    def chat_history(self) -> List[Dict[str, str]]:
        """Returns the full chat history."""
        return [{"user": i[0], "gpt": i[1]} for i in self._kwargs["chatbot"]]