|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Conversion script for stable diffusion checkpoints which _only_ contain a contrlnet. """ |
|
|
|
import argparse |
|
|
|
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument( |
|
"--original_config_file", |
|
type=str, |
|
required=True, |
|
help="The YAML config file corresponding to the original architecture.", |
|
) |
|
parser.add_argument( |
|
"--num_in_channels", |
|
default=None, |
|
type=int, |
|
help="The number of input channels. If `None` number of input channels will be automatically inferred.", |
|
) |
|
parser.add_argument( |
|
"--image_size", |
|
default=512, |
|
type=int, |
|
help=( |
|
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" |
|
" Base. Use 768 for Stable Diffusion v2." |
|
), |
|
) |
|
parser.add_argument( |
|
"--extract_ema", |
|
action="store_true", |
|
help=( |
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" |
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" |
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." |
|
), |
|
) |
|
parser.add_argument( |
|
"--upcast_attention", |
|
action="store_true", |
|
help=( |
|
"Whether the attention computation should always be upcasted. This is necessary when running stable" |
|
" diffusion 2.1." |
|
), |
|
) |
|
parser.add_argument( |
|
"--from_safetensors", |
|
action="store_true", |
|
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", |
|
) |
|
parser.add_argument( |
|
"--to_safetensors", |
|
action="store_true", |
|
help="Whether to store pipeline in safetensors format or not.", |
|
) |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") |
|
|
|
|
|
def parse_bool(string): |
|
if string == "True": |
|
return True |
|
elif string == "False": |
|
return False |
|
else: |
|
raise ValueError(f"could not parse string as bool {string}") |
|
|
|
parser.add_argument( |
|
"--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool |
|
) |
|
|
|
parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) |
|
|
|
args = parser.parse_args() |
|
|
|
controlnet = download_controlnet_from_original_ckpt( |
|
checkpoint_path=args.checkpoint_path, |
|
original_config_file=args.original_config_file, |
|
image_size=args.image_size, |
|
extract_ema=args.extract_ema, |
|
num_in_channels=args.num_in_channels, |
|
upcast_attention=args.upcast_attention, |
|
from_safetensors=args.from_safetensors, |
|
device=args.device, |
|
use_linear_projection=args.use_linear_projection, |
|
cross_attention_dim=args.cross_attention_dim, |
|
) |
|
|
|
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) |