Spaces:
Runtime error
Runtime error
import gradio as gr | |
# from PIL import Image | |
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor | |
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-docvqa-large") | |
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-docvqa-large") | |
def process_document(image, question): | |
# image = Image.open(image) | |
inputs = processor(images=image, text=question, return_tensors="pt") | |
predictions = model.generate(**inputs) | |
return processor.decode(predictions[0], skip_special_tokens=True) | |
description = "Demo for pix2struct fine-tuned on DocVQA (document visual question answering). To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2210.03347.pdf' target='_blank'>PIX2STRUCT: SCREENSHOT PARSING AS PRETRAINING FOR VISUAL LANGUAGE UNDERSTANDING</a></p>" | |
demo = gr.Interface( | |
fn=process_document, | |
inputs=["image", "text"], | |
outputs="text", | |
title="Demo: pix2struct for DocVQA", | |
description=description, | |
article=article, | |
enable_queue=True, | |
examples=[["example_1.png", "When is the coffee break?"], ["example_2.jpeg", "What's the population of Stoddard?"]], | |
cache_examples=False) | |
demo.launch() |