ArcaneGAN / app.py
Ahsen Khaliq
Update app.py
71753e8
raw
history blame
4.98 kB
import os
os.system("wget https://github.com/Sxela/ArcaneGAN/releases/download/v0.2/ArcaneGANv0.2.jit")
os.system("pip -qq install facenet_pytorch")
from facenet_pytorch import MTCNN
from torchvision import transforms
import torch, PIL
torch.hub.download_url_to_file('https://www.giantfreakinrobot.com/wp-content/uploads/2021/02/adult-groot.jpg', 'groot.jpg')
torch.hub.download_url_to_file('https://hf.space/gradioiframe/akhaliq/AnimeGANv2/file/bill.png', 'bill.png')
from tqdm.notebook import tqdm
import gradio as gr
mtcnn = MTCNN(image_size=256, margin=80)
# simplest ye olde trustworthy MTCNN for face detection with landmarks
def detect(img):
# Detect faces
batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True)
# Select faces
if not mtcnn.keep_all:
batch_boxes, batch_probs, batch_points = mtcnn.select_boxes(
batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method
)
return batch_boxes, batch_points
# my version of isOdd, should make a separate repo for it :D
def makeEven(_x):
return _x if (_x % 2 == 0) else _x+1
# the actual scaler function
def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False):
x, y = _img.size
ratio = 2 #initial ratio
#scale to desired face size
if (boxes is not None):
if len(boxes)>0:
ratio = target_face/max(boxes[0][2:]-boxes[0][:2]);
ratio = min(ratio, max_upscale)
if VERBOSE: print('up by', ratio)
if fixed_ratio>0:
if VERBOSE: print('fixed ratio')
ratio = fixed_ratio
x*=ratio
y*=ratio
#downscale to fit into max res
res = x*y
if res > max_res:
ratio = pow(res/max_res,1/2);
if VERBOSE: print(ratio)
x=int(x/ratio)
y=int(y/ratio)
#make dimensions even, because usually NNs fail on uneven dimensions due skip connection size mismatch
x = makeEven(int(x))
y = makeEven(int(y))
size = (x, y)
return _img.resize(size)
"""
A useful scaler algorithm, based on face detection.
Takes PIL.Image, returns a uniformly scaled PIL.Image
boxes: a list of detected bboxes
_img: PIL.Image
max_res: maximum pixel area to fit into. Use to stay below the VRAM limits of your GPU.
target_face: desired face size. Upscale or downscale the whole image to fit the detected face into that dimension.
fixed_ratio: fixed scale. Ignores the face size, but doesn't ignore the max_res limit.
max_upscale: maximum upscale ratio. Prevents from scaling images with tiny faces to a blurry mess.
"""
def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False):
boxes = None
boxes, _ = detect(_img)
if VERBOSE: print('boxes',boxes)
img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE)
return img_resized
size = 256
means = [0.485, 0.456, 0.406]
stds = [0.229, 0.224, 0.225]
t_stds = torch.tensor(stds).cpu()[:,None,None]
t_means = torch.tensor(means).cpu()[:,None,None]
def makeEven(_x):
return int(_x) if (_x % 2 == 0) else int(_x+1)
img_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(means,stds)])
def tensor2im(var):
return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0)
def proc_pil_img(input_image, model):
transformed_image = img_transforms(input_image)[None,...].cpu()
with torch.no_grad():
result_image = model(transformed_image)[0]; print(result_image.shape)
output_image = tensor2im(result_image)
output_image = output_image.detach().cpu().numpy().astype('uint8')
output_image = PIL.Image.fromarray(output_image)
return output_image
model_path = './ArcaneGANv0.2.jit'
model = torch.jit.load(model_path,map_location='cpu').to('cpu').float().eval().cpu()
def fit(img,maxsize=512):
maxdim = max(*img.size)
if maxdim>maxsize:
ratio = maxsize/maxdim
x,y = img.size
size = (int(x*ratio),int(y*ratio))
img = img.resize(size)
return img
def process(im):
im = scale_by_face_size(im, target_face=300, max_res=1_500_000, max_upscale=2)
res = proc_pil_img(im, model)
return res
title = "ArcaneGAN"
description = "Gradio demo for ArcaneGAN, portrait to Arcane style. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://github.com/Sxela/ArcaneGAN' target='_blank'>Github Repo</a></p>"
gr.Interface(
process,
gr.inputs.Image(type="pil", label="Input"),
gr.outputs.Image(type="pil", label="Output"),
title=title,
description=description,
article=article,
examples=[['groot.jpg'],['bill.png']],
enable_queue=True
).launch(debug=True)