import os os.system("wget https://github.com/Sxela/ArcaneGAN/releases/download/v0.2/ArcaneGANv0.2.jit") os.system("pip -qq install facenet_pytorch") from facenet_pytorch import MTCNN from torchvision import transforms import torch, PIL from tqdm.notebook import tqdm import gradio as gr mtcnn = MTCNN(image_size=256, margin=80) # simplest ye olde trustworthy MTCNN for face detection with landmarks def detect(img): # Detect faces batch_boxes, batch_probs, batch_points = mtcnn.detect(img, landmarks=True) # Select faces if not mtcnn.keep_all: batch_boxes, batch_probs, batch_points = mtcnn.select_boxes( batch_boxes, batch_probs, batch_points, img, method=mtcnn.selection_method ) return batch_boxes, batch_points # my version of isOdd, should make a separate repo for it :D def makeEven(_x): return _x if (_x % 2 == 0) else _x+1 # the actual scaler function def scale(boxes, _img, max_res=1_500_000, target_face=256, fixed_ratio=0, max_upscale=2, VERBOSE=False): x, y = _img.size ratio = 2 #initial ratio #scale to desired face size if (boxes is not None): if len(boxes)>0: ratio = target_face/max(boxes[0][2:]-boxes[0][:2]); ratio = min(ratio, max_upscale) if VERBOSE: print('up by', ratio) if fixed_ratio>0: if VERBOSE: print('fixed ratio') ratio = fixed_ratio x*=ratio y*=ratio #downscale to fit into max res res = x*y if res > max_res: ratio = pow(res/max_res,1/2); if VERBOSE: print(ratio) x=int(x/ratio) y=int(y/ratio) #make dimensions even, because usually NNs fail on uneven dimensions due skip connection size mismatch x = makeEven(int(x)) y = makeEven(int(y)) size = (x, y) return _img.resize(size) """ A useful scaler algorithm, based on face detection. Takes PIL.Image, returns a uniformly scaled PIL.Image boxes: a list of detected bboxes _img: PIL.Image max_res: maximum pixel area to fit into. Use to stay below the VRAM limits of your GPU. target_face: desired face size. Upscale or downscale the whole image to fit the detected face into that dimension. fixed_ratio: fixed scale. Ignores the face size, but doesn't ignore the max_res limit. max_upscale: maximum upscale ratio. Prevents from scaling images with tiny faces to a blurry mess. """ def scale_by_face_size(_img, max_res=1_500_000, target_face=256, fix_ratio=0, max_upscale=2, VERBOSE=False): boxes = None boxes, _ = detect(_img) if VERBOSE: print('boxes',boxes) img_resized = scale(boxes, _img, max_res, target_face, fix_ratio, max_upscale, VERBOSE) return img_resized size = 256 means = [0.485, 0.456, 0.406] stds = [0.229, 0.224, 0.225] t_stds = torch.tensor(stds).cpu()[:,None,None] t_means = torch.tensor(means).cpu()[:,None,None] def makeEven(_x): return int(_x) if (_x % 2 == 0) else int(_x+1) img_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(means,stds)]) def tensor2im(var): return var.mul(t_stds).add(t_means).mul(255.).clamp(0,255).permute(1,2,0) def proc_pil_img(input_image, model): transformed_image = img_transforms(input_image)[None,...].cpu() with torch.no_grad(): result_image = model(transformed_image)[0]; print(result_image.shape) output_image = tensor2im(result_image) output_image = output_image.detach().cpu().numpy().astype('uint8') output_image = PIL.Image.fromarray(output_image) return output_image model_path = './ArcaneGANv0.2.jit' model = torch.jit.load(model_path,map_location='cpu').to('cpu').float().eval().cpu() def fit(img,maxsize=512): maxdim = max(*img.size) if maxdim>maxsize: ratio = maxsize/maxdim x,y = img.size size = (int(x*ratio),int(y*ratio)) img = img.resize(size) return img def process(img): im = scale_by_face_size(im, target_face=300, max_res=1_500_000, max_upscale=2) res = proc_pil_img(im, model) return res title = "ArcaneGAN" description = "Gradio demo for ArcaneGan. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "
Adversarial Open Domain Adaption for Sketch-to-Photo Synthesis | Github Repo
" gr.Interface( process, gr.inputs.Image(type="pil", label="Input"), gr.outputs.Image(type="pil", label="Output"), title=title, description=description, article=article, ).launch(debug=True)