import os from huggingface_hub import hf_hub_download conceptual_weight = hf_hub_download(repo_id="akhaliq/CLIP-prefix-captioning-conceptual-weights", filename="conceptual_weights.pt") coco_weight = hf_hub_download(repo_id="akhaliq/CLIP-prefix-captioning-COCO-weights", filename="coco_weights.pt") import clip import os from torch import nn import numpy as np import torch import torch.nn.functional as nnf import sys from typing import Tuple, List, Union, Optional from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup from tqdm import tqdm, trange import skimage.io as io import PIL.Image import gradio as gr N = type(None) V = np.array ARRAY = np.ndarray ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] VS = Union[Tuple[V, ...], List[V]] VN = Union[V, N] VNS = Union[VS, N] T = torch.Tensor TS = Union[Tuple[T, ...], List[T]] TN = Optional[T] TNS = Union[Tuple[TN, ...], List[TN]] TSN = Optional[TS] TA = Union[T, ARRAY] D = torch.device CPU = torch.device('cpu') def get_device(device_id: int) -> D: if not torch.cuda.is_available(): return CPU device_id = min(torch.cuda.device_count() - 1, device_id) return torch.device(f'cuda:{device_id}') CUDA = get_device class MLP(nn.Module): def forward(self, x: T) -> T: return self.model(x) def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): super(MLP, self).__init__() layers = [] for i in range(len(sizes) -1): layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) if i < len(sizes) - 2: layers.append(act()) self.model = nn.Sequential(*layers) class ClipCaptionModel(nn.Module): #@functools.lru_cache #FIXME def get_dummy_token(self, batch_size: int, device: D) -> T: return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): embedding_text = self.gpt.transformer.wte(tokens) prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) #print(embedding_text.size()) #torch.Size([5, 67, 768]) #print(prefix_projections.size()) #torch.Size([5, 1, 768]) embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) if labels is not None: dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) labels = torch.cat((dummy_token, tokens), dim=1) out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) return out def __init__(self, prefix_length: int, prefix_size: int = 512): super(ClipCaptionModel, self).__init__() self.prefix_length = prefix_length self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] if prefix_length > 10: # not enough memory self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) else: self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) class ClipCaptionPrefix(ClipCaptionModel): def parameters(self, recurse: bool = True): return self.clip_project.parameters() def train(self, mode: bool = True): super(ClipCaptionPrefix, self).train(mode) self.gpt.eval() return self #@title Caption prediction def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, entry_length=67, temperature=1., stop_token: str = '.'): model.eval() stop_token_index = tokenizer.encode(stop_token)[0] tokens = None scores = None device = next(model.parameters()).device seq_lengths = torch.ones(beam_size, device=device) is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) with torch.no_grad(): if embed is not None: generated = embed else: if tokens is None: tokens = torch.tensor(tokenizer.encode(prompt)) tokens = tokens.unsqueeze(0).to(device) generated = model.gpt.transformer.wte(tokens) for i in range(entry_length): outputs = model.gpt(inputs_embeds=generated) logits = outputs.logits logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) logits = logits.softmax(-1).log() if scores is None: scores, next_tokens = logits.topk(beam_size, -1) generated = generated.expand(beam_size, *generated.shape[1:]) next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) if tokens is None: tokens = next_tokens else: tokens = tokens.expand(beam_size, *tokens.shape[1:]) tokens = torch.cat((tokens, next_tokens), dim=1) else: logits[is_stopped] = -float(np.inf) logits[is_stopped, 0] = 0 scores_sum = scores[:, None] + logits seq_lengths[~is_stopped] += 1 scores_sum_average = scores_sum / seq_lengths[:, None] scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) next_tokens_source = next_tokens // scores_sum.shape[1] seq_lengths = seq_lengths[next_tokens_source] next_tokens = next_tokens % scores_sum.shape[1] next_tokens = next_tokens.unsqueeze(1) tokens = tokens[next_tokens_source] tokens = torch.cat((tokens, next_tokens), dim=1) generated = generated[next_tokens_source] scores = scores_sum_average * seq_lengths is_stopped = is_stopped[next_tokens_source] next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) generated = torch.cat((generated, next_token_embed), dim=1) is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() if is_stopped.all(): break scores = scores / seq_lengths output_list = tokens.cpu().numpy() output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] order = scores.argsort(descending=True) output_texts = [output_texts[i] for i in order] return output_texts def generate2( model, tokenizer, tokens=None, prompt=None, embed=None, entry_count=1, entry_length=67, # maximum number of words top_p=0.8, temperature=1., stop_token: str = '.', ): model.eval() generated_num = 0 generated_list = [] stop_token_index = tokenizer.encode(stop_token)[0] filter_value = -float("Inf") device = next(model.parameters()).device with torch.no_grad(): for entry_idx in trange(entry_count): if embed is not None: generated = embed else: if tokens is None: tokens = torch.tensor(tokenizer.encode(prompt)) tokens = tokens.unsqueeze(0).to(device) generated = model.gpt.transformer.wte(tokens) for i in range(entry_length): outputs = model.gpt(inputs_embeds=generated) logits = outputs.logits logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ ..., :-1 ].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[:, indices_to_remove] = filter_value next_token = torch.argmax(logits, -1).unsqueeze(0) next_token_embed = model.gpt.transformer.wte(next_token) if tokens is None: tokens = next_token else: tokens = torch.cat((tokens, next_token), dim=1) generated = torch.cat((generated, next_token_embed), dim=1) if stop_token_index == next_token.item(): break output_list = list(tokens.squeeze().cpu().numpy()) output_text = tokenizer.decode(output_list) generated_list.append(output_text) return generated_list[0] is_gpu = False device = CUDA(0) if is_gpu else "cpu" clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False) tokenizer = GPT2Tokenizer.from_pretrained("gpt2") def inference(img,model_name): prefix_length = 10 model = ClipCaptionModel(prefix_length) if model_name == "COCO": model_path = coco_weight else: model_path = conceptual_weight model.load_state_dict(torch.load(model_path, map_location=CPU), strict=False) model = model.eval() device = CUDA(0) if is_gpu else "cpu" model = model.to(device) use_beam_search = False pil_image = PIL.Image.fromarray(img) image = preprocess(pil_image).unsqueeze(0).to(device) with torch.no_grad(): prefix = clip_model.encode_image(image).to(device, dtype=torch.float32) prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) if use_beam_search: generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0] else: generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed) return generated_text_prefix title = "CLIP prefix captioning" description = "Gradio demo for CLIP prefix captioning: a simple image captioning model. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "

Github Repo

" examples=[['water.jpeg',"COCO"]] gr.Interface( inference, inputs=[gr.Image(label="Input"),gr.Radio(choices=["COCO","Conceptual captions"], value="COCO", label="Model")], outputs=gr.Textbox(label="Output"), title=title, description=description, article=article, examples=examples ).launch(debug=True)