Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
•
6c5755e
1
Parent(s):
cb326fe
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
+
import urllib.request
|
4 |
+
import gradio as gr
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
|
10 |
+
urllib.request.urlretrieve(url, filename)
|
11 |
+
|
12 |
+
model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed)
|
13 |
+
#model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed)
|
14 |
+
#model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed)
|
15 |
+
|
16 |
+
midas = torch.hub.load("intel-isl/MiDaS", model_type)
|
17 |
+
|
18 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
19 |
+
midas.to(device)
|
20 |
+
midas.eval()
|
21 |
+
|
22 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
23 |
+
|
24 |
+
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
|
25 |
+
transform = midas_transforms.dpt_transform
|
26 |
+
else:
|
27 |
+
transform = midas_transforms.small_transform
|
28 |
+
|
29 |
+
def inference(img):
|
30 |
+
img = cv2.imread(img.name)
|
31 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
32 |
+
|
33 |
+
input_batch = transform(img).to(device)
|
34 |
+
|
35 |
+
with torch.no_grad():
|
36 |
+
prediction = midas(input_batch)
|
37 |
+
|
38 |
+
prediction = torch.nn.functional.interpolate(
|
39 |
+
prediction.unsqueeze(1),
|
40 |
+
size=img.shape[:2],
|
41 |
+
mode="bicubic",
|
42 |
+
align_corners=False,
|
43 |
+
).squeeze()
|
44 |
+
|
45 |
+
output = prediction.cpu().numpy()
|
46 |
+
formatted = (output * 255 / np.max(output)).astype('uint8')
|
47 |
+
img = Image.fromarray(formatted)
|
48 |
+
return img
|
49 |
+
|
50 |
+
inputs = gr.inputs.Image(type='file', label="Original Image")
|
51 |
+
outputs = gr.outputs.Image(type="pil",label="Output Image")
|
52 |
+
|
53 |
+
title = "DPT-Large"
|
54 |
+
description = "Gradio demo for DPT-Large:Vision Transformers for Dense Prediction.To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
|
55 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2103.13413'>Vision Transformers for Dense Prediction</a> | <a href='https://github.com/intel-isl/MiDaS'>Github Repo</a></p>"
|
56 |
+
|
57 |
+
examples=[['dog.jpg']]
|
58 |
+
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False,examples=examples).launch(debug=True)
|