File size: 7,334 Bytes
8d4d98f
bdea3af
 
1bcc2cd
8d4d98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff9c835
4d4b4c8
96d399d
8d4d98f
 
3f2d4dc
8d4d98f
96d399d
 
 
 
 
 
 
 
 
7f4023f
96d399d
5866cd5
5b2ed41
 
d9fe6d2
c41263f
d9fe6d2
 
96d399d
bf1cb4a
96d399d
 
d9fe6d2
96d399d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9fe6d2
8d4d98f
541a5f9
8d4d98f
 
 
 
 
5b2ed41
8d4d98f
5b2ed41
8d4d98f
 
 
8fd4221
 
 
 
ec8f0b0
 
49ce528
 
c3d2c2f
 
e00d153
 
c5e7a23
 
9769454
ec8f0b0
11137cc
 
8d4d98f
 
 
 
 
 
 
 
 
0e519a2
46a015d
aa0db9c
ce2df71
7f4023f
 
ce2df71
91959e5
38887ff
91959e5
ce2df71
 
 
91959e5
 
ec8f0b0
ce2df71
 
 
ec8f0b0
 
49ce528
ce2df71
 
 
49ce528
 
c3d2c2f
ce2df71
 
 
c3d2c2f
 
e00d153
ce2df71
 
 
e00d153
 
c5e7a23
ce2df71
 
 
c5e7a23
 
9769454
ce2df71
 
 
9769454
 
5043e00
11137cc
 
 
91959e5
2697d0c
 
 
49ce528
96d399d
91959e5
 
 
ec8f0b0
91959e5
 
49ce528
ec8f0b0
 
c3d2c2f
49ce528
 
e00d153
c3d2c2f
 
c5e7a23
e00d153
 
9769454
c5e7a23
 
11137cc
9769454
 
11137cc
 
 
ec8f0b0
aa0db9c
a058c0e
3f2d4dc
 
8d4d98f
a058c0e
5d457fc
aa0db9c
836ff97
5d457fc
90d55de
11137cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
os.system("pip install -r requirements.txt")
os.system("pip freeze")

from PIL import Image
import torch
import gradio as gr
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *


#from e4e_projection import projection as e4e_projection

from copy import deepcopy
import imageio

import os
import sys
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download

device= 'cpu'
model_path_e = hf_hub_download(repo_id="akhaliq/JoJoGAN_e4e_ffhq_encode", filename="e4e_ffhq_encode.pt")
ckpt = torch.load(model_path_e, map_location='cpu')
opts = ckpt['opts']
opts['checkpoint_path'] = model_path_e
opts= Namespace(**opts)
net = pSp(opts, device).eval().to(device)

@ torch.no_grad()
def projection(img, name, device='cuda'):
 
    
    transform = transforms.Compose(
        [
            transforms.Resize(256),
            transforms.CenterCrop(256),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
        ]
    )
    img = transform(img).unsqueeze(0).to(device)
    images, w_plus = net(img, randomize_noise=False, return_latents=True)
    result_file = {}
    result_file['latent'] = w_plus[0]
    torch.save(result_file, name)
    return w_plus[0]




device = 'cpu' 


latent_dim = 512

model_path_s = hf_hub_download(repo_id="akhaliq/jojogan-stylegan2-ffhq-config-f", filename="stylegan2-ffhq-config-f.pt")
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load(model_path_s, map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
mean_latent = original_generator.mean_latent(10000)

generatorjojo = deepcopy(original_generator)

generatordisney = deepcopy(original_generator)

generatorjinx = deepcopy(original_generator)

generatorcaitlyn = deepcopy(original_generator)

generatoryasuho = deepcopy(original_generator)

generatorarcanemulti = deepcopy(original_generator)

generatorart = deepcopy(original_generator)

generatorspider = deepcopy(original_generator)

generatorsketch = deepcopy(original_generator)


transform = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ]
)




modeljojo = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_preserve_color.pt")


ckptjojo = torch.load(modeljojo, map_location=lambda storage, loc: storage)
generatorjojo.load_state_dict(ckptjojo["g"], strict=False)


modeldisney = hf_hub_download(repo_id="akhaliq/jojogan-disney", filename="disney_preserve_color.pt")

ckptdisney = torch.load(modeldisney, map_location=lambda storage, loc: storage)
generatordisney.load_state_dict(ckptdisney["g"], strict=False)


modeljinx = hf_hub_download(repo_id="akhaliq/jojo-gan-jinx", filename="arcane_jinx_preserve_color.pt")

ckptjinx = torch.load(modeljinx, map_location=lambda storage, loc: storage)
generatorjinx.load_state_dict(ckptjinx["g"], strict=False)


modelcaitlyn = hf_hub_download(repo_id="akhaliq/jojogan-arcane", filename="arcane_caitlyn_preserve_color.pt")

ckptcaitlyn = torch.load(modelcaitlyn, map_location=lambda storage, loc: storage)
generatorcaitlyn.load_state_dict(ckptcaitlyn["g"], strict=False)


modelyasuho = hf_hub_download(repo_id="akhaliq/JoJoGAN-jojo", filename="jojo_yasuho_preserve_color.pt")

ckptyasuho = torch.load(modelyasuho, map_location=lambda storage, loc: storage)
generatoryasuho.load_state_dict(ckptyasuho["g"], strict=False)


model_arcane_multi = hf_hub_download(repo_id="akhaliq/jojogan-arcane", filename="arcane_multi_preserve_color.pt")

ckptarcanemulti = torch.load(model_arcane_multi, map_location=lambda storage, loc: storage)
generatorarcanemulti.load_state_dict(ckptarcanemulti["g"], strict=False)


modelart = hf_hub_download(repo_id="akhaliq/jojo-gan-art", filename="art.pt")

ckptart = torch.load(modelart, map_location=lambda storage, loc: storage)
generatorart.load_state_dict(ckptart["g"], strict=False)


modelSpiderverse = hf_hub_download(repo_id="akhaliq/jojo-gan-spiderverse", filename="Spiderverse-face-500iters-8face.pt")

ckptspider = torch.load(modelSpiderverse, map_location=lambda storage, loc: storage)
generatorspider.load_state_dict(ckptspider["g"], strict=False)

modelSketch = hf_hub_download(repo_id="akhaliq/jojogan-sketch", filename="sketch_multi.pt")

ckptsketch = torch.load(modelSketch, map_location=lambda storage, loc: storage)
generatorsketch.load_state_dict(ckptsketch["g"], strict=False)

def inference(img, model):  
    img.save('out.jpg')  
    aligned_face = align_face('out.jpg')
        
    my_w = projection(aligned_face, "test.pt", device).unsqueeze(0)
    if model == 'JoJo':
        with torch.no_grad():
            my_sample = generatorjojo(my_w, input_is_latent=True)  
    elif model == 'Disney':
        with torch.no_grad():
            my_sample = generatordisney(my_w, input_is_latent=True)
    elif model == 'Jinx':
        with torch.no_grad():
            my_sample = generatorjinx(my_w, input_is_latent=True)
    elif model == 'Caitlyn':
        with torch.no_grad():
            my_sample = generatorcaitlyn(my_w, input_is_latent=True)
    elif model == 'Yasuho':
        with torch.no_grad():
            my_sample = generatoryasuho(my_w, input_is_latent=True)
    elif model == 'Arcane Multi':
        with torch.no_grad():
            my_sample = generatorarcanemulti(my_w, input_is_latent=True)
    elif model == 'Art':
        with torch.no_grad():
            my_sample = generatorart(my_w, input_is_latent=True)
    elif model == 'Spider-Verse':
        with torch.no_grad():
            my_sample = generatorspider(my_w, input_is_latent=True)
    else:
        with torch.no_grad():
            my_sample = generatorsketch(my_w, input_is_latent=True)
            
    
    npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
    imageio.imwrite('filename.jpeg', npimage)
    return 'filename.jpeg'
  
title = "JoJoGAN"
description = "Gradio Demo for JoJoGAN: One Shot Face Stylization. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.11641' target='_blank'>JoJoGAN: One Shot Face Stylization</a>| <a href='https://github.com/mchong6/JoJoGAN' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_jojogan' alt='visitor badge'></center>"

examples=[['mona.png','Jinx']]
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['JoJo', 'Disney','Jinx','Caitlyn','Yasuho','Arcane Multi','Art','Spider-Verse','Sketch'], type="value", default='JoJo', label="Model")], gr.outputs.Image(type="file"),title=title,description=description,article=article,allow_flagging=False,examples=examples,allow_screenshot=False).launch(enable_queue=True, cache_examples=True)