File size: 3,658 Bytes
8d4d98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2d4dc
8d4d98f
 
 
 
 
 
ddaf006
 
 
8d4d98f
 
 
 
feb9da2
8d4d98f
 
 
 
 
 
ddaf006
8d4d98f
 
 
 
 
 
 
 
 
 
 
 
 
 
46a015d
 
 
8d4d98f
 
 
feb9da2
aa0db9c
ddaf006
 
aa0db9c
 
 
 
 
79681a1
aa0db9c
 
ddaf006
aa0db9c
 
 
 
 
 
6ac90f7
a058c0e
3f2d4dc
 
8d4d98f
a058c0e
5d457fc
aa0db9c
191f30c
5d457fc
 
a058c0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
from PIL import Image
import torch
import gradio as gr

import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random

import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *
from e4e_projection import projection as e4e_projection

from copy import deepcopy
import imageio

os.makedirs('inversion_codes', exist_ok=True)
os.makedirs('style_images', exist_ok=True)
os.makedirs('style_images_aligned', exist_ok=True)
os.makedirs('models', exist_ok=True)

#os.system("wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2")
#os.system("bzip2 -dk shape_predictor_68_face_landmarks.dat.bz2")
#os.system("mv shape_predictor_68_face_landmarks.dat models/dlibshape_predictor_68_face_landmarks.dat")


device = 'cpu' 

os.system("gdown https://drive.google.com/uc?id=1-AG7JPTWc9REBrkll3OyEpZwSOWhlX0j")


latent_dim = 512

# Load original generator
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load('stylegan2-ffhq-config-f.pt', map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
mean_latent = original_generator.mean_latent(10000)

# to be finetuned generator
generator = deepcopy(original_generator)

transform = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ]
)

os.system("gdown https://drive.google.com/uc?id=1-7UlCppmiG4DKbhYDNbIZTc6mHy9JMWJ")
os.system("cp e4e_ffhq_encode.pt models/e4e_ffhq_encode.pt")

plt.rcParams['figure.dpi'] = 150


os.system("gdown https://drive.google.com/uc?id=1-8E0PFT37v5fZs-61oIrFbNpE28Unp2y")

def inference(img):    
    my_w = e4e_projection(img, "test.pt", device).unsqueeze(0)
    
    
    plt.rcParams['figure.dpi'] = 150
    pretrained = 'jojo' #@param ['supergirl', 'arcane_jinx', 'arcane_caitlyn', 'jojo_yasuho', 'jojo', 'disney']
    #@markdown Preserve color tries to preserve color of original image by limiting family of allowable transformations. Otherwise, the stylized image will inherit the colors of the reference images, leading to heavier stylizations.
    preserve_color = False 
    

    ckpt = torch.load('jojo.pt', map_location=lambda storage, loc: storage)
    generator.load_state_dict(ckpt["g"], strict=False)
    
    with torch.no_grad():
        generator.eval()
    
        original_my_sample = original_generator(my_w, input_is_latent=True)
        my_sample = generator(my_w, input_is_latent=True)   
    npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
    imageio.imwrite('filename.jpeg', npimage)
    return 'filename.jpeg'
  
title = "JoJoGAN"
description = "Gradio Demo for JoJoGAN: One Shot Face Stylization. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://github.com/mchong6/JoJoGAN' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_jojogan' alt='visitor badge'></center> <p style='text-align: center'>samples from repo: <img src='https://raw.githubusercontent.com/mchong6/JoJoGAN/main/teaser.jpg' alt='animation'/></p>"

examples=[['iu.jpeg']]
gr.Interface(inference, [gr.inputs.Image(type="pil",shape=(512,512))], gr.outputs.Image(type="file"),title=title,description=description,article=article,enable_queue=True,allow_flagging=False,examples=examples).launch()