Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from pathlib import Path | |
os.system("pip install gsutil") | |
os.system("git clone --branch=main https://github.com/google-research/t5x") | |
os.system("mv t5x t5x_tmp; mv t5x_tmp/* .; rm -r t5x_tmp") | |
os.system("sed -i 's:jax\[tpu\]:jax:' setup.py") | |
os.system("python3 -m pip install -e .") | |
# install mt3 | |
os.system("git clone --branch=main https://github.com/magenta/mt3") | |
os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp") | |
os.system("python3 -m pip install -e .") | |
# copy checkpoints | |
os.system("gsutil -q -m cp -r gs://mt3/checkpoints .") | |
# copy soundfont (originally from https://sites.google.com/site/soundfonts4u) | |
os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .") | |
#@title Imports and Definitions | |
import functools | |
import os | |
import numpy as np | |
import tensorflow.compat.v2 as tf | |
import functools | |
import gin | |
import jax | |
import librosa | |
import note_seq | |
import seqio | |
import t5 | |
import t5x | |
from mt3 import metrics_utils | |
from mt3 import models | |
from mt3 import network | |
from mt3 import note_sequences | |
from mt3 import preprocessors | |
from mt3 import spectrograms | |
from mt3 import vocabularies | |
import nest_asyncio | |
nest_asyncio.apply() | |
SAMPLE_RATE = 16000 | |
SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2' | |
def upload_audio(audio, sample_rate): | |
return note_seq.audio_io.wav_data_to_samples_librosa( | |
audio, sample_rate=sample_rate) | |
class InferenceModel(object): | |
"""Wrapper of T5X model for music transcription.""" | |
def __init__(self, checkpoint_path, model_type='mt3'): | |
# Model Constants. | |
if model_type == 'ismir2021': | |
num_velocity_bins = 127 | |
self.encoding_spec = note_sequences.NoteEncodingSpec | |
self.inputs_length = 512 | |
elif model_type == 'mt3': | |
num_velocity_bins = 1 | |
self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec | |
self.inputs_length = 256 | |
else: | |
raise ValueError('unknown model_type: %s' % model_type) | |
gin_files = ['/content/mt3/gin/model.gin', | |
f'/content/mt3/gin/{model_type}.gin'] | |
self.batch_size = 8 | |
self.outputs_length = 1024 | |
self.sequence_length = {'inputs': self.inputs_length, | |
'targets': self.outputs_length} | |
self.partitioner = t5x.partitioning.ModelBasedPjitPartitioner( | |
model_parallel_submesh=(1, 1, 1, 1), num_partitions=1) | |
# Build Codecs and Vocabularies. | |
self.spectrogram_config = spectrograms.SpectrogramConfig() | |
self.codec = vocabularies.build_codec( | |
vocab_config=vocabularies.VocabularyConfig( | |
num_velocity_bins=num_velocity_bins)) | |
self.vocabulary = vocabularies.vocabulary_from_codec(self.codec) | |
self.output_features = { | |
'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2), | |
'targets': seqio.Feature(vocabulary=self.vocabulary), | |
} | |
# Create a T5X model. | |
self._parse_gin(gin_files) | |
self.model = self._load_model() | |
# Restore from checkpoint. | |
self.restore_from_checkpoint(checkpoint_path) | |
def input_shapes(self): | |
return { | |
'encoder_input_tokens': (self.batch_size, self.inputs_length), | |
'decoder_input_tokens': (self.batch_size, self.outputs_length) | |
} | |
def _parse_gin(self, gin_files): | |
"""Parse gin files used to train the model.""" | |
gin_bindings = [ | |
'from __gin__ import dynamic_registration', | |
'from mt3 import vocabularies', | |
'[email protected]()', | |
'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS' | |
] | |
with gin.unlock_config(): | |
gin.parse_config_files_and_bindings( | |
gin_files, gin_bindings, finalize_config=False) | |
def _load_model(self): | |
"""Load up a T5X `Model` after parsing training gin config.""" | |
model_config = gin.get_configurable(network.T5Config)() | |
module = network.Transformer(config=model_config) | |
return models.ContinuousInputsEncoderDecoderModel( | |
module=module, | |
input_vocabulary=self.output_features['inputs'].vocabulary, | |
output_vocabulary=self.output_features['targets'].vocabulary, | |
optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0), | |
input_depth=spectrograms.input_depth(self.spectrogram_config)) | |
def restore_from_checkpoint(self, checkpoint_path): | |
"""Restore training state from checkpoint, resets self._predict_fn().""" | |
train_state_initializer = t5x.utils.TrainStateInitializer( | |
optimizer_def=self.model.optimizer_def, | |
init_fn=self.model.get_initial_variables, | |
input_shapes=self.input_shapes, | |
partitioner=self.partitioner) | |
restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig( | |
path=checkpoint_path, mode='specific', dtype='float32') | |
train_state_axes = train_state_initializer.train_state_axes | |
self._predict_fn = self._get_predict_fn(train_state_axes) | |
self._train_state = train_state_initializer.from_checkpoint_or_scratch( | |
[restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0)) | |
def _get_predict_fn(self, train_state_axes): | |
"""Generate a partitioned prediction function for decoding.""" | |
def partial_predict_fn(params, batch, decode_rng): | |
return self.model.predict_batch_with_aux( | |
params, batch, decoder_params={'decode_rng': None}) | |
return self.partitioner.partition( | |
partial_predict_fn, | |
in_axis_resources=( | |
train_state_axes.params, | |
t5x.partitioning.PartitionSpec('data',), None), | |
out_axis_resources=t5x.partitioning.PartitionSpec('data',) | |
) | |
def predict_tokens(self, batch, seed=0): | |
"""Predict tokens from preprocessed dataset batch.""" | |
prediction, _ = self._predict_fn( | |
self._train_state.params, batch, jax.random.PRNGKey(seed)) | |
return self.vocabulary.decode_tf(prediction).numpy() | |
def __call__(self, audio): | |
"""Infer note sequence from audio samples. | |
Args: | |
audio: 1-d numpy array of audio samples (16kHz) for a single example. | |
Returns: | |
A note_sequence of the transcribed audio. | |
""" | |
ds = self.audio_to_dataset(audio) | |
ds = self.preprocess(ds) | |
model_ds = self.model.FEATURE_CONVERTER_CLS(pack=False)( | |
ds, task_feature_lengths=self.sequence_length) | |
model_ds = model_ds.batch(self.batch_size) | |
inferences = (tokens for batch in model_ds.as_numpy_iterator() | |
for tokens in self.predict_tokens(batch)) | |
predictions = [] | |
for example, tokens in zip(ds.as_numpy_iterator(), inferences): | |
predictions.append(self.postprocess(tokens, example)) | |
result = metrics_utils.event_predictions_to_ns( | |
predictions, codec=self.codec, encoding_spec=self.encoding_spec) | |
return result['est_ns'] | |
def audio_to_dataset(self, audio): | |
"""Create a TF Dataset of spectrograms from input audio.""" | |
frames, frame_times = self._audio_to_frames(audio) | |
return tf.data.Dataset.from_tensors({ | |
'inputs': frames, | |
'input_times': frame_times, | |
}) | |
def _audio_to_frames(self, audio): | |
"""Compute spectrogram frames from audio.""" | |
frame_size = self.spectrogram_config.hop_width | |
padding = [0, frame_size - len(audio) % frame_size] | |
audio = np.pad(audio, padding, mode='constant') | |
frames = spectrograms.split_audio(audio, self.spectrogram_config) | |
num_frames = len(audio) // frame_size | |
times = np.arange(num_frames) / self.spectrogram_config.frames_per_second | |
return frames, times | |
def preprocess(self, ds): | |
pp_chain = [ | |
functools.partial( | |
t5.data.preprocessors.split_tokens_to_inputs_length, | |
sequence_length=self.sequence_length, | |
output_features=self.output_features, | |
feature_key='inputs', | |
additional_feature_keys=['input_times']), | |
# Cache occurs here during training. | |
preprocessors.add_dummy_targets, | |
functools.partial( | |
preprocessors.compute_spectrograms, | |
spectrogram_config=self.spectrogram_config) | |
] | |
for pp in pp_chain: | |
ds = pp(ds) | |
return ds | |
def postprocess(self, tokens, example): | |
tokens = self._trim_eos(tokens) | |
start_time = example['input_times'][0] | |
# Round down to nearest symbolic token step. | |
start_time -= start_time % (1 / self.codec.steps_per_second) | |
return { | |
'est_tokens': tokens, | |
'start_time': start_time, | |
# Internal MT3 code expects raw inputs, not used here. | |
'raw_inputs': [] | |
} | |
def _trim_eos(tokens): | |
tokens = np.array(tokens, np.int32) | |
if vocabularies.DECODED_EOS_ID in tokens: | |
tokens = tokens[:np.argmax(tokens == vocabularies.DECODED_EOS_ID)] | |
return tokens | |
inference_model = InferenceModel('./checkpoints/mt3/', 'mt3') | |
def inference(audio): | |
audio = upload_audio(audio,sample_rate=16000) | |
est_ns = inference_model(audio) | |
note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid') | |
return './transcribed.mid' | |
title = "Midi-DDSP" | |
description = "Gradio demo for MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling. To use it, simply upload your midi file, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.09312' target='_blank'>MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling</a> | <a href='https://github.com/magenta/midi-ddsp' target='_blank'>Github Repo</a></p>" | |
examples=[['download.wav']] | |
gr.Interface( | |
inference, | |
gr.inputs.Audio(type="filepath", label="Input"), | |
[gr.outputs.File(type="file", label="Output")], | |
title=title, | |
description=description, | |
article=article, | |
examples=examples | |
).launch(enable_queue=True) |