|
import sys |
|
import os |
|
|
|
import matplotlib.pyplot as plt |
|
import PIL |
|
from PIL import Image |
|
import json |
|
|
|
import torch |
|
import torchvision |
|
import torchvision.transforms as T |
|
|
|
|
|
from timm import create_model |
|
|
|
import gradio as gr |
|
|
|
|
|
model_name = "convnext_xlarge_in22k" |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
model = create_model(model_name, pretrained=True).to(device) |
|
|
|
|
|
from timm.data.constants import \ |
|
IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD |
|
|
|
NORMALIZE_MEAN = IMAGENET_DEFAULT_MEAN |
|
NORMALIZE_STD = IMAGENET_DEFAULT_STD |
|
SIZE = 256 |
|
|
|
|
|
transforms = [ |
|
T.Resize(SIZE, interpolation=T.InterpolationMode.BICUBIC), |
|
T.ToTensor(), |
|
T.Normalize(NORMALIZE_MEAN, NORMALIZE_STD), |
|
] |
|
|
|
transforms = T.Compose(transforms) |
|
|
|
os.system("wget https://dl.fbaipublicfiles.com/convnext/label_to_words.json") |
|
imagenet_labels = json.load(open('label_to_words.json')) |
|
|
|
def inference(img): |
|
img_tensor = transforms(img).unsqueeze(0).to(device) |
|
|
|
output = torch.softmax(model(img_tensor), dim=1) |
|
top5 = torch.topk(output, k=5) |
|
top5_prob = top5.values[0] |
|
top5_indices = top5.indices[0] |
|
|
|
result = {} |
|
|
|
for i in range(5): |
|
labels = imagenet_labels[str(int(top5_indices[i]))] |
|
prob = float(top5_prob[i]) |
|
result[labels] = prob |
|
|
|
return result |
|
|
|
inputs = gr.inputs.Image(type='pil') |
|
outputs = gr.outputs.Label(type="confidences",num_top_classes=5) |
|
|
|
title = "ConvNeXt" |
|
description = "Gradio demo for ConvNeXt for image classification. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
|
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.03545' target='_blank'>A ConvNet for the 2020s</a> | <a href='https://github.com/facebookresearch/ConvNeXt' target='_blank'>Github Repo</a> | <a href='https://github.com/leondgarse/keras_cv_attention_models' target='_blank'>pretrained ConvNeXt model from keras_cv_attention_models</a> | <a href='https://github.com/stanislavfort/adversaries_to_convnext' target='_blank'>examples usage from adversaries_to_convnext</a></p>" |
|
|
|
examples = ['Tortoise-on-ground-surrounded-by-plants.jpeg'] |
|
|
|
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, analytics_enabled=False, examples=examples).launch(enable_queue=True) |