import os import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt from tensorflow import keras import requests import PIL import io import matplotlib.pyplot as plt def download_image(url): resp = requests.get(url) resp.raise_for_status() return PIL.Image.open(io.BytesIO(resp.content)) from keras_cv_attention_models import convnext mm = convnext.ConvNeXtBase() downloaded_image = download_image( "https://www.popsci.com/uploads/2021/09/21/Tortoise-on-ground-surrounded-by-plants.jpg?auto=webp" ) downloaded_image_np = np.array(downloaded_image) img = downloaded_image_np imm = keras.applications.imagenet_utils.preprocess_input(img, mode='torch') image_input = tf.expand_dims(tf.image.resize(imm, mm.input_shape[1:3]), 0) pred = mm(image_input) pred_np = pred.numpy()