fairseqs2 / app.py
Ahsen Khaliq
Update app.py
a9d4fe4
raw
history blame
2.34 kB
import os
os.system("pip install gradio==2.4.6")
import gradio as gr
title = "fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit"
description = "Gradio Demo for fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.06912' target='_blank'>fairseq S^2: A Scalable and Integrable Speech Synthesis Toolkit</a> | <a href='https://github.com/pytorch/fairseq/tree/main/examples/speech_synthesis' target='_blank'>Github Repo</a></p>"
examples = [
["Hello this is a test run","fastspeech2-en-200_speaker-cv4"],
["Hello, this is a test run.","tts_transformer-en-200_speaker-cv4"],
["Bonjour, ceci est un test.","tts_transformer-fr-cv7_css10"],
["BЗдравствуйте, это пробный запуск.","tts_transformer-ru-cv7_css10"],
["Merhaba, bu bir deneme çalışmasıdır.","tts_transformer-tr-cv7"],
]
io1 = gr.Interface.load("huggingface/facebook/fastspeech2-en-200_speaker-cv4")
io2 = gr.Interface.load("huggingface/facebook/tts_transformer-en-200_speaker-cv4")
io3 = gr.Interface.load("huggingface/facebook/tts_transformer-fr-cv7_css10")
io4 = gr.Interface.load("huggingface/facebook/tts_transformer-ru-cv7_css10")
io5 = gr.Interface.load("huggingface/facebook/tts_transformer-tr-cv7")
def inference(text,model):
if model == "fastspeech2-en-200_speaker-cv4":
outtext = io1(text)
elif model == "tts_transformer-en-200_speaker-cv4":
outtext = io2(text)
elif model == "tts_transformer-fr-cv7_css10":
outtext = io3(text)
elif model == "tts_transformer-ru-cv7_css10":
outtext = io4(text)
else:
outtext = io5(text)
return outtext
gr.Interface(
inference,
[gr.inputs.Textbox(label="Input",lines=5),gr.inputs.Dropdown(choices=["fastspeech2-en-200_speaker-cv4","tts_transformer-en-200_speaker-cv4","tts_transformer-tr-cv7","tts_transformer-fr-cv7_css10","tts_transformer-ru-cv7_css10"], type="value", default="fastspeech2-en-200_speaker-cv4", label="model")
],
gr.outputs.Audio(label="Output"),
examples=examples,
article=article,
title=title,
description=description,
enable_queue=True).launch()