import gradio as gr import replicate import os import requests from PIL import Image from io import BytesIO examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 640px; } """ def generate_image(prompt, api_key): # Set the API key for the current session os.environ["REPLICATE_API_TOKEN"] = api_key # Prepare the input for the model inputs = { "prompt": prompt, "prompt_upsampling": True } # Run the model and get the output URL output_url = replicate.run( "black-forest-labs/flux-1.1-pro", input=inputs ) # Fetch the image from the URL response = requests.get(output_url) image = Image.open(BytesIO(response.content)) # Return the image return image with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # FLUX 1.1 Pro Text-to-Image Generator """) with gr.Row(): with gr.Column(): api_key = gr.Text( label="Replicate API Key", show_label=False, max_lines=1, placeholder="Enter your Replicate API key...", container=False, type="password", ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) gr.Examples( examples = examples, inputs = [prompt] ) gr.on( triggers=[run_button.click, prompt.submit], fn = generate_image, inputs = [prompt, api_key], outputs = [result,] ) demo.queue().launch()