File size: 3,373 Bytes
3c6d2ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import sys
import os
import requests

import torch
import numpy as np

import matplotlib.pyplot as plt
from PIL import Image
import gradio as gr


os.system("pip install timm==0.4.5")
os.system("git clone https://github.com/facebookresearch/mae.git")
sys.path.append('./mae')

import models_mae

# define the utils

imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])

def show_image(image, title=''):
    # image is [H, W, 3]
    assert image.shape[2] == 3
    plt.imshow(torch.clip((image * imagenet_std + imagenet_mean) * 255, 0, 255).int())
    plt.title(title, fontsize=16)
    plt.axis('off')
    return

def prepare_model(chkpt_dir, arch='mae_vit_large_patch16'):
    # build model
    model = getattr(models_mae, arch)()
    # load model
    checkpoint = torch.load(chkpt_dir, map_location='cpu')
    msg = model.load_state_dict(checkpoint['model'], strict=False)
    print(msg)
    return model

def run_one_image(img, model):
    x = torch.tensor(img)

    # make it a batch-like
    x = x.unsqueeze(dim=0)
    x = torch.einsum('nhwc->nchw', x)

    # run MAE
    loss, y, mask = model(x.float(), mask_ratio=0.75)
    y = model.unpatchify(y)
    y = torch.einsum('nchw->nhwc', y).detach().cpu()

    # visualize the mask
    mask = mask.detach()
    mask = mask.unsqueeze(-1).repeat(1, 1, model.patch_embed.patch_size[0]**2 *3)  # (N, H*W, p*p*3)
    mask = model.unpatchify(mask)  # 1 is removing, 0 is keeping
    mask = torch.einsum('nchw->nhwc', mask).detach().cpu()
    
    x = torch.einsum('nchw->nhwc', x)

    # masked image
    im_masked = x * (1 - mask)

    # MAE reconstruction pasted with visible patches
    im_paste = x * (1 - mask) + y * mask

    # make the plt figure larger
    plt.rcParams['figure.figsize'] = [24, 24]

    plt.subplot(1, 4, 1)
    show_image(x[0], "original")

    plt.subplot(1, 4, 2)
    show_image(im_masked[0], "masked")

    plt.subplot(1, 4, 3)
    show_image(y[0], "reconstruction")

    plt.subplot(1, 4, 4)
    show_image(im_paste[0], "reconstruction + visible")

    plt.show()
    

# download checkpoint if not exist
os.system("wget -nc https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_large.pth")

chkpt_dir = 'mae_visualize_vit_large.pth'
model_mae = prepare_model(chkpt_dir, 'mae_vit_large_patch16')
print('Model loaded.')

    
def inference(img):    
  img = img.resize((224, 224))
  img = np.array(img) / 255.
  
  assert img.shape == (224, 224, 3)
  
  # normalize by ImageNet mean and std
  img = img - imagenet_mean
  img = img / imagenet_std
  
  
  torch.manual_seed(2)
  return run_one_image(img, model_mae)
  

title = "MAE"
description = "Gradio Demo for MAE. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."

article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.11641' target='_blank'>JoJoGAN: One Shot Face Stylization</a>| <a href='https://github.com/mchong6/JoJoGAN' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_jojogan' alt='visitor badge'></center>"


gr.Interface(inference, [gr.inputs.Image(type="pil")], gr.outputs.Image(type="plot"),title=title,description=description,article=article,allow_flagging=False,examples=examples,allow_screenshot=False,enable_queue=True).launch()