|
import os
|
|
import lightning as L
|
|
import torch
|
|
import glob
|
|
import time
|
|
from snac import SNAC
|
|
from litgpt import Tokenizer
|
|
from litgpt.utils import (
|
|
num_parameters,
|
|
)
|
|
from litgpt.generate.base import (
|
|
generate_AA,
|
|
generate_ASR,
|
|
generate_TA,
|
|
generate_TT,
|
|
generate_AT,
|
|
generate_TA_BATCH,
|
|
next_token_image_batch
|
|
)
|
|
import soundfile as sf
|
|
from litgpt.model import GPT, Config
|
|
from lightning.fabric.utilities.load import _lazy_load as lazy_load
|
|
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str
|
|
from utils.snac_utils import get_snac, generate_audio_data
|
|
import whisper
|
|
from tqdm import tqdm
|
|
from huggingface_hub import snapshot_download
|
|
|
|
|
|
torch.set_printoptions(sci_mode=False)
|
|
|
|
|
|
|
|
text_vocabsize = 151936
|
|
text_specialtokens = 64
|
|
audio_vocabsize = 4096
|
|
audio_specialtokens = 64
|
|
|
|
padded_text_vocabsize = text_vocabsize + text_specialtokens
|
|
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens
|
|
|
|
_eot = text_vocabsize
|
|
_pad_t = text_vocabsize + 1
|
|
_input_t = text_vocabsize + 2
|
|
_answer_t = text_vocabsize + 3
|
|
_asr = text_vocabsize + 4
|
|
|
|
_eoa = audio_vocabsize
|
|
_pad_a = audio_vocabsize + 1
|
|
_input_a = audio_vocabsize + 2
|
|
_answer_a = audio_vocabsize + 3
|
|
_split = audio_vocabsize + 4
|
|
_image = audio_vocabsize + 5
|
|
_eoimage = audio_vocabsize + 6
|
|
|
|
|
|
def get_input_ids_TA(text, text_tokenizer):
|
|
input_ids_item = [[] for _ in range(8)]
|
|
text_tokens = text_tokenizer.encode(text)
|
|
for i in range(7):
|
|
input_ids_item[i] = [layershift(_pad_a, i)] * (len(text_tokens) + 2) + [
|
|
layershift(_answer_a, i)
|
|
]
|
|
input_ids_item[i] = torch.tensor(input_ids_item[i]).unsqueeze(0)
|
|
input_ids_item[-1] = [_input_t] + text_tokens.tolist() + [_eot] + [_answer_t]
|
|
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0)
|
|
return input_ids_item
|
|
|
|
|
|
def get_input_ids_TT(text, text_tokenizer):
|
|
input_ids_item = [[] for i in range(8)]
|
|
text_tokens = text_tokenizer.encode(text).tolist()
|
|
|
|
for i in range(7):
|
|
input_ids_item[i] = torch.tensor(
|
|
[layershift(_pad_a, i)] * (len(text_tokens) + 3)
|
|
).unsqueeze(0)
|
|
input_ids_item[-1] = [_input_t] + text_tokens + [_eot] + [_answer_t]
|
|
input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0)
|
|
|
|
return input_ids_item
|
|
|
|
|
|
def get_input_ids_whisper(
|
|
mel, leng, whispermodel, device,
|
|
special_token_a=_answer_a, special_token_t=_answer_t,
|
|
):
|
|
|
|
with torch.no_grad():
|
|
mel = mel.unsqueeze(0).to(device)
|
|
|
|
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
|
|
|
|
T = audio_feature.size(0)
|
|
input_ids = []
|
|
for i in range(7):
|
|
input_ids_item = []
|
|
input_ids_item.append(layershift(_input_a, i))
|
|
input_ids_item += [layershift(_pad_a, i)] * T
|
|
input_ids_item += [(layershift(_eoa, i)), layershift(special_token_a, i)]
|
|
input_ids.append(torch.tensor(input_ids_item).unsqueeze(0))
|
|
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, special_token_t])
|
|
input_ids.append(input_id_T.unsqueeze(0))
|
|
return audio_feature.unsqueeze(0), input_ids
|
|
|
|
|
|
def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device):
|
|
with torch.no_grad():
|
|
mel = mel.unsqueeze(0).to(device)
|
|
|
|
audio_feature = whispermodel.embed_audio(mel)[0][:leng]
|
|
T = audio_feature.size(0)
|
|
input_ids_AA = []
|
|
for i in range(7):
|
|
input_ids_item = []
|
|
input_ids_item.append(layershift(_input_a, i))
|
|
input_ids_item += [layershift(_pad_a, i)] * T
|
|
input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)]
|
|
input_ids_AA.append(torch.tensor(input_ids_item))
|
|
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
|
|
input_ids_AA.append(input_id_T)
|
|
|
|
input_ids_AT = []
|
|
for i in range(7):
|
|
input_ids_item = []
|
|
input_ids_item.append(layershift(_input_a, i))
|
|
input_ids_item += [layershift(_pad_a, i)] * T
|
|
input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)]
|
|
input_ids_AT.append(torch.tensor(input_ids_item))
|
|
input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
|
|
input_ids_AT.append(input_id_T)
|
|
|
|
input_ids = [input_ids_AA, input_ids_AT]
|
|
stacked_inputids = [[] for _ in range(8)]
|
|
for i in range(2):
|
|
for j in range(8):
|
|
stacked_inputids[j].append(input_ids[i][j])
|
|
stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids]
|
|
return torch.stack([audio_feature, audio_feature]), stacked_inputids
|
|
|
|
|
|
def load_audio(path):
|
|
audio = whisper.load_audio(path)
|
|
duration_ms = (len(audio) / 16000) * 1000
|
|
audio = whisper.pad_or_trim(audio)
|
|
mel = whisper.log_mel_spectrogram(audio)
|
|
return mel, int(duration_ms / 20) + 1
|
|
|
|
|
|
def A1_A2_batch(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step,
|
|
snacmodel, out_dir=None):
|
|
with fabric.init_tensor():
|
|
model.set_kv_cache(batch_size=2)
|
|
tokenlist = generate_TA_BATCH(
|
|
model,
|
|
audio_feature,
|
|
input_ids,
|
|
[leng, leng],
|
|
["A1A2", "A1T2"],
|
|
max_returned_tokens=2048,
|
|
temperature=0.9,
|
|
top_k=1,
|
|
eos_id_a=_eoa,
|
|
eos_id_t=_eot,
|
|
pad_id_t=_pad_t,
|
|
shift=padded_text_vocabsize,
|
|
include_prompt=True,
|
|
generate_text=True,
|
|
)
|
|
text_tokenlist = tokenlist[-1]
|
|
if text_vocabsize in text_tokenlist:
|
|
text_tokenlist = text_tokenlist[: text_tokenlist.index(text_vocabsize)]
|
|
text = text_tokenizer.decode(torch.tensor(text_tokenlist)).strip()
|
|
|
|
audio_tokenlist = tokenlist[:-1]
|
|
audiolist = reconscruct_snac(audio_tokenlist)
|
|
audio = reconstruct_tensors(audiolist)
|
|
if out_dir is None:
|
|
out_dir = "./output/default/A1-A2-batch"
|
|
else:
|
|
out_dir = out_dir + "/A1-A2-batch"
|
|
if not os.path.exists(out_dir):
|
|
os.makedirs(out_dir)
|
|
with torch.inference_mode():
|
|
audio_hat = snacmodel.decode(audio)
|
|
sf.write(
|
|
f"{out_dir}/{step:02d}.wav",
|
|
audio_hat.squeeze().cpu().numpy(),
|
|
24000,
|
|
)
|
|
model.clear_kv_cache()
|
|
return text
|
|
|
|
|
|
def A1_T2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step):
|
|
with fabric.init_tensor():
|
|
model.set_kv_cache(batch_size=1)
|
|
tokenlist = generate_AT(
|
|
model,
|
|
audio_feature,
|
|
input_ids,
|
|
[leng],
|
|
["AT"],
|
|
max_returned_tokens=2048,
|
|
temperature=0.9,
|
|
top_k=1,
|
|
eos_id_a=_eoa,
|
|
eos_id_t=_eot,
|
|
pad_id_t=_pad_t,
|
|
shift=padded_text_vocabsize,
|
|
include_prompt=True,
|
|
generate_text=True,
|
|
)
|
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
|
|
|
|
|
def A1_A2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step,
|
|
snacmodel, out_dir=None):
|
|
with fabric.init_tensor():
|
|
model.set_kv_cache(batch_size=1)
|
|
tokenlist = generate_AA(
|
|
model,
|
|
audio_feature,
|
|
input_ids,
|
|
[leng],
|
|
["A1T2"],
|
|
max_returned_tokens=2048,
|
|
temperature=0.9,
|
|
top_k=1,
|
|
eos_id_a=_eoa,
|
|
eos_id_t=_eot,
|
|
pad_id_t=_pad_t,
|
|
shift=padded_text_vocabsize,
|
|
include_prompt=True,
|
|
generate_text=True,
|
|
)
|
|
audiolist = reconscruct_snac(tokenlist)
|
|
tokenlist = tokenlist[-1]
|
|
if text_vocabsize in tokenlist:
|
|
tokenlist = tokenlist[: tokenlist.index(text_vocabsize)]
|
|
if out_dir is None:
|
|
out_dir = "./output/default/A1-A2"
|
|
else:
|
|
out_dir = out_dir + "/A1-A2"
|
|
if not os.path.exists(out_dir):
|
|
os.makedirs(out_dir)
|
|
|
|
audio = reconstruct_tensors(audiolist)
|
|
with torch.inference_mode():
|
|
audio_hat = snacmodel.decode(audio)
|
|
sf.write(
|
|
f"{out_dir}/{step:02d}.wav",
|
|
audio_hat.squeeze().cpu().numpy(),
|
|
24000,
|
|
)
|
|
model.clear_kv_cache()
|
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
|
|
|
|
|
def A1_T1(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step):
|
|
with fabric.init_tensor():
|
|
model.set_kv_cache(batch_size=1)
|
|
tokenlist = generate_ASR(
|
|
model,
|
|
audio_feature,
|
|
input_ids,
|
|
[leng],
|
|
["A1T1"],
|
|
max_returned_tokens=2048,
|
|
temperature=0.9,
|
|
top_k=1,
|
|
eos_id_a=_eoa,
|
|
eos_id_t=_eot,
|
|
pad_id_t=_pad_t,
|
|
shift=padded_text_vocabsize,
|
|
include_prompt=True,
|
|
generate_text=True,
|
|
)
|
|
model.clear_kv_cache()
|
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
|
|
|
|
|
def T1_A2(fabric, input_ids, model, text_tokenizer, step,
|
|
snacmodel, out_dir=None):
|
|
with fabric.init_tensor():
|
|
model.set_kv_cache(batch_size=1)
|
|
tokenlist = generate_TA(
|
|
model,
|
|
None,
|
|
input_ids,
|
|
None,
|
|
["T1A2"],
|
|
max_returned_tokens=2048,
|
|
temperature=0.9,
|
|
top_k=1,
|
|
eos_id_a=_eoa,
|
|
eos_id_t=_eot,
|
|
pad_id_t=_pad_t,
|
|
shift=padded_text_vocabsize,
|
|
include_prompt=True,
|
|
generate_text=True,
|
|
)
|
|
|
|
audiolist = reconscruct_snac(tokenlist)
|
|
tokenlist = tokenlist[-1]
|
|
|
|
if text_vocabsize in tokenlist:
|
|
tokenlist = tokenlist[: tokenlist.index(text_vocabsize)]
|
|
audio = reconstruct_tensors(audiolist)
|
|
if out_dir is None:
|
|
out_dir = "./output/default/T1-A2"
|
|
else:
|
|
out_dir = out_dir + "/T1-A2"
|
|
if not os.path.exists(out_dir):
|
|
os.makedirs(out_dir)
|
|
|
|
with torch.inference_mode():
|
|
audio_hat = snacmodel.decode(audio)
|
|
sf.write(
|
|
f"{out_dir}/{step:02d}.wav",
|
|
audio_hat.squeeze().cpu().numpy(),
|
|
24000,
|
|
)
|
|
model.clear_kv_cache()
|
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
|
|
|
|
|
def T1_T2(fabric, input_ids, model, text_tokenizer, step):
|
|
|
|
with fabric.init_tensor():
|
|
model.set_kv_cache(batch_size=1)
|
|
tokenlist = generate_TT(
|
|
model,
|
|
None,
|
|
input_ids,
|
|
None,
|
|
["T1T2"],
|
|
max_returned_tokens=2048,
|
|
temperature=0.9,
|
|
top_k=1,
|
|
eos_id_a=_eoa,
|
|
eos_id_t=_eot,
|
|
pad_id_t=_pad_t,
|
|
shift=padded_text_vocabsize,
|
|
include_prompt=True,
|
|
generate_text=True,
|
|
)
|
|
model.clear_kv_cache()
|
|
return text_tokenizer.decode(torch.tensor(tokenlist)).strip()
|
|
|
|
|
|
def load_model(ckpt_dir, device):
|
|
snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
|
|
whisper_model_path = ckpt_dir + "/small.pt"
|
|
if not os.path.exists(whisper_model_path):
|
|
whisper_model_path = "small"
|
|
whispermodel = whisper.load_model(whisper_model_path).to(device)
|
|
text_tokenizer = Tokenizer(ckpt_dir)
|
|
fabric = L.Fabric(devices=1, strategy="auto")
|
|
config = Config.from_file(ckpt_dir + "/model_config.yaml")
|
|
config.post_adapter = False
|
|
|
|
with fabric.init_module(empty_init=False):
|
|
model = GPT(config)
|
|
|
|
model = fabric.setup(model)
|
|
state_dict = lazy_load(ckpt_dir + "/lit_model.pth")
|
|
model.load_state_dict(state_dict, strict=True)
|
|
model.to(device).eval()
|
|
|
|
return fabric, model, text_tokenizer, snacmodel, whispermodel
|
|
|
|
|
|
def download_model(ckpt_dir):
|
|
repo_id = "gpt-omni/mini-omni2"
|
|
snapshot_download(repo_id, local_dir=ckpt_dir, revision="main")
|
|
|
|
|
|
def get_text_stream(list_output, index, text_tokenizer):
|
|
text_tokens = list_output[-1][index:]
|
|
index += len(text_tokens)
|
|
is_text_end = False
|
|
if text_vocabsize in text_tokens:
|
|
text_tokens = text_tokens[:text_tokens.index(text_vocabsize)]
|
|
is_text_end = True
|
|
if len(text_tokens) == 0:
|
|
return "", index, is_text_end
|
|
res_text = text_tokenizer.decode(torch.tensor(text_tokens))
|
|
return res_text, index, is_text_end
|
|
|
|
|
|
class OmniInference:
|
|
|
|
def __init__(self, ckpt_dir='./checkpoint', device='cuda:0'):
|
|
self.device = device
|
|
if not os.path.exists(ckpt_dir):
|
|
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
|
|
download_model(ckpt_dir)
|
|
self.fabric, self.model, self.text_tokenizer, self.snacmodel, self.whispermodel = load_model(ckpt_dir, device)
|
|
|
|
def warm_up(self, sample='./data/samples/output1.wav'):
|
|
for _ in self.run_AT_batch_stream(sample):
|
|
pass
|
|
|
|
@torch.inference_mode()
|
|
def run_AT_batch_stream(self,
|
|
audio_path,
|
|
stream_stride=4,
|
|
max_returned_tokens=2048,
|
|
temperature=0.9,
|
|
top_k=1,
|
|
top_p=1.0,
|
|
eos_id_a=_eoa,
|
|
eos_id_t=_eot,
|
|
save_path=None
|
|
):
|
|
|
|
assert os.path.exists(audio_path), f"audio file {audio_path} not found"
|
|
model = self.model
|
|
|
|
with self.fabric.init_tensor():
|
|
model.set_kv_cache(batch_size=2,device=self.device)
|
|
|
|
mel, leng = load_audio(audio_path)
|
|
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, self.whispermodel, self.device)
|
|
T = input_ids[0].size(1)
|
|
device = input_ids[0].device
|
|
|
|
assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}"
|
|
|
|
if model.max_seq_length < max_returned_tokens - 1:
|
|
raise NotImplementedError(
|
|
f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
|
|
)
|
|
|
|
input_pos = torch.tensor([T], device=device)
|
|
list_output = [[] for i in range(8)]
|
|
tokens_A, token_T = next_token_image_batch(
|
|
model,
|
|
audio_feature.to(torch.float32).to(model.device),
|
|
None,
|
|
input_ids,
|
|
[T - 3, T - 3],
|
|
["A1T2", "A1T2"],
|
|
input_pos=torch.arange(0, T, device=device),
|
|
temperature=temperature,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
)
|
|
|
|
for i in range(7):
|
|
list_output[i].append(tokens_A[i].tolist()[0])
|
|
list_output[7].append(token_T.tolist()[0])
|
|
|
|
model_input_ids = [[] for i in range(8)]
|
|
for i in range(7):
|
|
tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize
|
|
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
|
|
model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device))
|
|
model_input_ids[i] = torch.stack(model_input_ids[i])
|
|
|
|
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
|
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
|
model_input_ids[-1] = torch.stack(model_input_ids[-1])
|
|
|
|
text_end = False
|
|
index = 1
|
|
nums_generate = stream_stride
|
|
begin_generate = False
|
|
current_index = 0
|
|
|
|
text_index = 0
|
|
is_text_end = False
|
|
|
|
for _ in tqdm(range(2, max_returned_tokens - T + 1)):
|
|
tokens_A, token_T = next_token_image_batch(
|
|
model,
|
|
None,
|
|
None,
|
|
model_input_ids,
|
|
None,
|
|
None,
|
|
input_pos=input_pos,
|
|
temperature=temperature,
|
|
top_k=top_k,
|
|
top_p=top_p,
|
|
)
|
|
|
|
if text_end:
|
|
token_T = torch.tensor([_pad_t], device=device)
|
|
|
|
if tokens_A[-1] == eos_id_a:
|
|
break
|
|
|
|
if token_T == eos_id_t:
|
|
text_end = True
|
|
|
|
for i in range(7):
|
|
list_output[i].append(tokens_A[i].tolist()[0])
|
|
list_output[7].append(token_T.tolist()[0])
|
|
|
|
model_input_ids = [[] for i in range(8)]
|
|
for i in range(7):
|
|
tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize
|
|
model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
|
|
model_input_ids[i].append(
|
|
torch.tensor([layershift(4097, i)], device=device)
|
|
)
|
|
model_input_ids[i] = torch.stack(model_input_ids[i])
|
|
|
|
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
|
model_input_ids[-1].append(token_T.clone().to(torch.int32))
|
|
model_input_ids[-1] = torch.stack(model_input_ids[-1])
|
|
|
|
if index == 7:
|
|
begin_generate = True
|
|
|
|
if begin_generate:
|
|
current_index += 1
|
|
if current_index == nums_generate:
|
|
current_index = 0
|
|
snac = get_snac(list_output, index, nums_generate)
|
|
audio_stream = generate_audio_data(snac, self.snacmodel, self.device)
|
|
if is_text_end:
|
|
text_stream = ""
|
|
else:
|
|
text_stream, text_index, is_text_end = get_text_stream(list_output, text_index, self.text_tokenizer)
|
|
|
|
yield (audio_stream, text_stream)
|
|
|
|
input_pos = input_pos.add_(1)
|
|
index += 1
|
|
text = self.text_tokenizer.decode(torch.tensor(list_output[-1]))
|
|
print(f"text output: {text}")
|
|
|
|
if save_path is not None:
|
|
audiolist = reconscruct_snac(list_output)
|
|
audio = reconstruct_tensors(audiolist)
|
|
with torch.inference_mode():
|
|
audio_hat = self.snacmodel.decode(audio)
|
|
sf.write(save_path, audio_hat.squeeze().cpu().numpy(), 24000)
|
|
|
|
model.clear_kv_cache()
|
|
return list_output
|
|
|
|
|
|
def test_infer():
|
|
device = "cuda:0"
|
|
out_dir = f"./output/{get_time_str()}"
|
|
ckpt_dir = f"./checkpoint"
|
|
if not os.path.exists(ckpt_dir):
|
|
print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
|
|
download_model(ckpt_dir)
|
|
|
|
fabric, model, text_tokenizer, snacmodel, whispermodel = load_model(ckpt_dir, device)
|
|
|
|
task = ['A1A2', 'asr', "T1A2", "AA-BATCH", 'T1T2', 'AT']
|
|
|
|
|
|
|
|
test_audio_list = sorted(glob.glob('./data/samples/output*.wav'))
|
|
test_audio_transcripts = [
|
|
"What is your name?",
|
|
"what are your hobbies?",
|
|
"Do you like beijing",
|
|
"How are you feeling today?",
|
|
"what is the weather like today?",
|
|
]
|
|
test_text_list = [
|
|
"What is your name?",
|
|
"How are you feeling today?",
|
|
"Can you describe your surroundings?",
|
|
"What did you do yesterday?",
|
|
"What is your favorite book and why?",
|
|
"How do you make a cup of tea?",
|
|
"What is the weather like today?",
|
|
"Can you explain the concept of time?",
|
|
"Can you tell me a joke?",
|
|
]
|
|
|
|
|
|
with torch.no_grad():
|
|
if "A1A2" in task:
|
|
print("===============================================================")
|
|
print(" testing A1A2")
|
|
print("===============================================================")
|
|
step = 0
|
|
for path in test_audio_list:
|
|
try:
|
|
mel, leng = load_audio(path)
|
|
audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device)
|
|
text = A1_A2(
|
|
fabric,
|
|
audio_feature,
|
|
input_ids,
|
|
leng,
|
|
model,
|
|
text_tokenizer,
|
|
step,
|
|
snacmodel,
|
|
out_dir=out_dir,
|
|
)
|
|
print(f"input: {test_audio_transcripts[step]}")
|
|
print(f"output: {text}")
|
|
step += 1
|
|
print(
|
|
"+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
|
|
)
|
|
except:
|
|
print(f"[error] failed to process {path}")
|
|
print("===============================================================")
|
|
|
|
if 'asr' in task:
|
|
print("===============================================================")
|
|
print(" testing asr")
|
|
print("===============================================================")
|
|
|
|
index = 0
|
|
step = 0
|
|
for path in test_audio_list:
|
|
mel, leng = load_audio(path)
|
|
audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device, special_token_a=_pad_a, special_token_t=_asr)
|
|
output = A1_T1(fabric, audio_feature, input_ids ,leng, model, text_tokenizer, index).lower().replace(',','').replace('.','').replace('?','')
|
|
print(f"audio_path: {path}")
|
|
print(f"audio transcript: {test_audio_transcripts[index]}")
|
|
print(f"asr output: {output}")
|
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
|
index += 1
|
|
|
|
if "T1A2" in task:
|
|
step = 0
|
|
print("\n")
|
|
print("===============================================================")
|
|
print(" testing T1A2")
|
|
print("===============================================================")
|
|
for text in test_text_list:
|
|
input_ids = get_input_ids_TA(text, text_tokenizer)
|
|
text_output = T1_A2(fabric, input_ids, model, text_tokenizer, step,
|
|
snacmodel, out_dir=out_dir)
|
|
print(f"input: {text}")
|
|
print(f"output: {text_output}")
|
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
|
step += 1
|
|
print("===============================================================")
|
|
|
|
if "T1T2" in task:
|
|
step = 0
|
|
print("\n")
|
|
print("===============================================================")
|
|
print(" testing T1T2")
|
|
print("===============================================================")
|
|
|
|
for text in test_text_list:
|
|
input_ids = get_input_ids_TT(text, text_tokenizer)
|
|
text_output = T1_T2(fabric, input_ids, model, text_tokenizer, step)
|
|
print(f" Input: {text}")
|
|
print(f"Output: {text_output}")
|
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
|
print("===============================================================")
|
|
|
|
if "AT" in task:
|
|
print("===============================================================")
|
|
print(" testing A1T2")
|
|
print("===============================================================")
|
|
step = 0
|
|
for path in test_audio_list:
|
|
mel, leng = load_audio(path)
|
|
audio_feature, input_ids = get_input_ids_whisper(
|
|
mel, leng, whispermodel, device,
|
|
special_token_a=_pad_a, special_token_t=_answer_t
|
|
)
|
|
text = A1_T2(
|
|
fabric, audio_feature, input_ids, leng, model, text_tokenizer, step
|
|
)
|
|
print(f"input: {test_audio_transcripts[step]}")
|
|
print(f"output: {text}")
|
|
step += 1
|
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
|
print("===============================================================")
|
|
|
|
if "AA-BATCH" in task:
|
|
print("===============================================================")
|
|
print(" testing A1A2-BATCH")
|
|
print("===============================================================")
|
|
step = 0
|
|
for path in test_audio_list:
|
|
mel, leng = load_audio(path)
|
|
audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device)
|
|
text = A1_A2_batch(
|
|
fabric, audio_feature, input_ids, leng, model, text_tokenizer, step,
|
|
snacmodel, out_dir=out_dir
|
|
)
|
|
print(f"input: {test_audio_transcripts[step]}")
|
|
print(f"output: {text}")
|
|
step += 1
|
|
print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++")
|
|
print("===============================================================")
|
|
|
|
print("*********************** test end *****************************")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_infer()
|
|
|