import gradio as gr from transformers import GPT2LMHeadModel, pipeline import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' # load pretrained + finetuned GPT2 model = GPT2LMHeadModel.from_pretrained("./model", from_pt=True) # model = GPT2LMHeadModel.from_pretrained("/zxc/model_epoch40_50w") model = model.to(device) # generator = pipeline('text-generation', model=model) trump = pipeline("text-generation", model=model, tokenizer=tokenizer, config={"max_length":140}) def generate(text): result = trump(text, num_return_sequences=1) return result[0]["generated_text"] examples = [ ["Today I'll be"], ["Why does the lying news media"], ["The democrats have"] ] demo = gr.Interface( fn=generate, inputs=gr.inputs.Textbox(lines=5, label="Input Text"), outputs=gr.outputs.Textbox(label="Generated Text"), examples=examples ) demo.launch()