import streamlit as st from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch from examples import dialogue_examples def generate_summary(model, tokenizer, dialogue): # Tokenize input dialogue inputs = tokenizer(dialogue, return_tensors="pt", max_length=1024, truncation=True) # Generate summary with torch.no_grad(): summary_ids = model.generate(inputs["input_ids"], max_length=150, length_penalty=0.8, num_beams=4) # Decode and return the summary summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) return summary st.set_page_config( page_title="Dialogue Summarizer App", page_icon="ale.png", ) # Display the app name below the logo st.title("Dialogue Summarizer App") st.info("\n🖥️ Note: This application is running on CPU. Please be patient ⏳.") st.markdown("This app summarizes dialogues. Enter a short dialogue in the text area. For best results, keep the dialogues at least a few sentences. You can also use the examples provided at the bottom of the page.") # Create two columns layout using st.columns col1, col2 = st.columns(2) # User input on the left side with increased height user_input = col1.text_area("Enter the dialog:", height=300) # Add "Summarize" and "Clear" buttons summarize_button = col1.button("Summarize") clear_button = col1.button("Clear") # If "Clear" button is clicked, clear the user input if clear_button: user_input = "" # If "Summarize" button is clicked and there is user input, generate and display summary on the right side if summarize_button and user_input: # Load pre-trained Pegasus model and tokenizer model_name = "ale-dp/pegasus-finetuned-dialog-summarizer" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Generate summary summary = generate_summary(model, tokenizer, user_input) # Display the generated summary on the right side col2.subheader("Generated Summary:") col2.write(summary) st.markdown("**Dialogue examples:**") for idx, example in enumerate(dialogue_examples, 1): st.write(f"Example {idx}:\n{example}")