Spaces:
Runtime error
Runtime error
File size: 5,921 Bytes
33e3a91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import time
import functools
import numpy as np
from math import cos, pi, floor, sin
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from stft_loss import MultiResolutionSTFTLoss
def flatten(v):
return [x for y in v for x in y]
def rescale(x):
return (x - x.min()) / (x.max() - x.min())
def find_max_epoch(path):
"""
Find latest checkpoint
Returns:
maximum iteration, -1 if there is no (valid) checkpoint
"""
files = os.listdir(path)
epoch = -1
for f in files:
if len(f) <= 4:
continue
if f[-4:] == '.pkl':
number = f[:-4]
try:
epoch = max(epoch, int(number))
except:
continue
return epoch
def print_size(net, keyword=None):
"""
Print the number of parameters of a network
"""
if net is not None and isinstance(net, torch.nn.Module):
module_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in module_parameters])
print("{} Parameters: {:.6f}M".format(
net.__class__.__name__, params / 1e6), flush=True, end="; ")
if keyword is not None:
keyword_parameters = [p for name, p in net.named_parameters() if p.requires_grad and keyword in name]
params = sum([np.prod(p.size()) for p in keyword_parameters])
print("{} Parameters: {:.6f}M".format(
keyword, params / 1e6), flush=True, end="; ")
print(" ")
####################### lr scheduler: Linear Warmup then Cosine Decay #############################
# Adapted from https://github.com/rosinality/vq-vae-2-pytorch
# Original Copyright 2019 Kim Seonghyeon
# MIT License (https://opensource.org/licenses/MIT)
def anneal_linear(start, end, proportion):
return start + proportion * (end - start)
def anneal_cosine(start, end, proportion):
cos_val = cos(pi * proportion) + 1
return end + (start - end) / 2 * cos_val
class Phase:
def __init__(self, start, end, n_iter, cur_iter, anneal_fn):
self.start, self.end = start, end
self.n_iter = n_iter
self.anneal_fn = anneal_fn
self.n = cur_iter
def step(self):
self.n += 1
return self.anneal_fn(self.start, self.end, self.n / self.n_iter)
def reset(self):
self.n = 0
@property
def is_done(self):
return self.n >= self.n_iter
class LinearWarmupCosineDecay:
def __init__(
self,
optimizer,
lr_max,
n_iter,
iteration=0,
divider=25,
warmup_proportion=0.3,
phase=('linear', 'cosine'),
):
self.optimizer = optimizer
phase1 = int(n_iter * warmup_proportion)
phase2 = n_iter - phase1
lr_min = lr_max / divider
phase_map = {'linear': anneal_linear, 'cosine': anneal_cosine}
cur_iter_phase1 = iteration
cur_iter_phase2 = max(0, iteration - phase1)
self.lr_phase = [
Phase(lr_min, lr_max, phase1, cur_iter_phase1, phase_map[phase[0]]),
Phase(lr_max, lr_min / 1e4, phase2, cur_iter_phase2, phase_map[phase[1]]),
]
if iteration < phase1:
self.phase = 0
else:
self.phase = 1
def step(self):
lr = self.lr_phase[self.phase].step()
for group in self.optimizer.param_groups:
group['lr'] = lr
if self.lr_phase[self.phase].is_done:
self.phase += 1
if self.phase >= len(self.lr_phase):
for phase in self.lr_phase:
phase.reset()
self.phase = 0
return lr
####################### model util #############################
def std_normal(size):
"""
Generate the standard Gaussian variable of a certain size
"""
return torch.normal(0, 1, size=size).cuda()
def weight_scaling_init(layer):
"""
weight rescaling initialization from https://arxiv.org/abs/1911.13254
"""
w = layer.weight.detach()
alpha = 10.0 * w.std()
layer.weight.data /= torch.sqrt(alpha)
layer.bias.data /= torch.sqrt(alpha)
@torch.no_grad()
def sampling(net, noisy_audio):
"""
Perform denoising (forward) step
"""
return net(noisy_audio)
def loss_fn(net, X, ell_p, ell_p_lambda, stft_lambda, mrstftloss, **kwargs):
"""
Loss function in CleanUNet
Parameters:
net: network
X: training data pair (clean audio, noisy_audio)
ell_p: \ell_p norm (1 or 2) of the AE loss
ell_p_lambda: factor of the AE loss
stft_lambda: factor of the STFT loss
mrstftloss: multi-resolution STFT loss function
Returns:
loss: value of objective function
output_dic: values of each component of loss
"""
assert type(X) == tuple and len(X) == 2
clean_audio, noisy_audio = X
B, C, L = clean_audio.shape
output_dic = {}
loss = 0.0
# AE loss
denoised_audio = net(noisy_audio)
if ell_p == 2:
ae_loss = nn.MSELoss()(denoised_audio, clean_audio)
elif ell_p == 1:
ae_loss = F.l1_loss(denoised_audio, clean_audio)
else:
raise NotImplementedError
loss += ae_loss * ell_p_lambda
output_dic["reconstruct"] = ae_loss.data * ell_p_lambda
if stft_lambda > 0:
sc_loss, mag_loss = mrstftloss(denoised_audio.squeeze(1), clean_audio.squeeze(1))
loss += (sc_loss + mag_loss) * stft_lambda
output_dic["stft_sc"] = sc_loss.data * stft_lambda
output_dic["stft_mag"] = mag_loss.data * stft_lambda
return loss, output_dic
|