"""Røst speech-to-text demo.""" import logging import os import warnings import gradio as gr import numpy as np import samplerate import torch from punctfix import PunctFixer from transformers import pipeline from dotenv import load_dotenv logging.basicConfig( level=logging.INFO, format="%(asctime)s ⋅ %(name)s ⋅ %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) logger = logging.getLogger("roest-asr-demo") load_dotenv() warnings.filterwarnings("ignore", category=FutureWarning) icon = """ """ TITLE = "Røst tale-til-tekst demo" EMAIL_SUBJECT = "Røst tale-til-tekst demo".replace(" ", "+") EMAIL_BODY = """Hej, Jeg har lige prøvet jeres Røst tale-til-tekst demo, og jeg er imponeret! Jeg kunne godt tænke mig at høre mere om jeres talegenkendelsesløsninger. Min use case er [indsæt use case her]. Venlig hilsen, [dit navn]""".replace(" ", "+").replace("\n", "%0D") DESCRIPTION = f""" This is a demo of the Danish speech recognition model [Røst](https://huggingface.co/alexandrainst/roest-315m). Press "Record" to record your own voice. When you're done you can press "Stop" to stop recording and "Submit" to send the audio to the model for transcription. You can also upload an audio file by pressing the {icon} button. _If you like what you see and are interested in integrating speech-to-text solutions into your products, feel free to [contact us](mailto:alexandra@alexandra.dk?subject={EMAIL_SUBJECT}&body={EMAIL_BODY})._ """ logger.info("Loading the ASR model...") device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") transcriber = pipeline( task="automatic-speech-recognition", model="alexandrainst/roest-315m", device=device, token=os.getenv("HUGGINGFACE_HUB_TOKEN", True), ) logger.info("Loading the punctuation fixer model...") transcription_fixer = PunctFixer(language="da", device=device) logger.info("Models loaded, ready to transcribe audio.") def transcribe_audio(sampling_rate_and_audio: tuple[int, np.ndarray] | None) -> str: """Transcribe the audio. Args: sampling_rate_and_audio: A tuple with the sampling rate and the audio, or None if no audio was provided. Returns: The transcription. """ if sampling_rate_and_audio is None: return ( "No audio was provided. Please record or upload an audio clip, and try " "again." ) sampling_rate, audio = sampling_rate_and_audio if audio.ndim > 1: audio = np.mean(audio, axis=1) audio = samplerate.resample(audio, 16_000 / sampling_rate, "sinc_best") logger.info(f"Transcribing audio clip of {len(audio) / 16_000:.2f} seconds...") transcription = transcriber( inputs=audio, generate_kwargs=dict(language="danish", task="transcribe") ) if not isinstance(transcription, dict): return "" logger.info(f"Raw transcription is {transcription['text']!r}. Cleaning it up...") cleaned_transcription = transcription_fixer.punctuate( text=transcription["text"] ) logger.info(f"Final transcription: {cleaned_transcription!r}") return cleaned_transcription demo = gr.Interface( fn=transcribe_audio, inputs=gr.Audio( sources=["microphone", "upload"], show_label=False, min_length=1, max_length=60 ), outputs="textbox", title=TITLE, description=DESCRIPTION, css="p { font-size: 1.0rem; }", allow_flagging="never", examples=[ "https://filedn.com/lRBwPhPxgV74tO0rDoe8SpH/audio-examples/bornholmsk.wav", "https://filedn.com/lRBwPhPxgV74tO0rDoe8SpH/audio-examples/soenderjysk.wav", "https://filedn.com/lRBwPhPxgV74tO0rDoe8SpH/audio-examples/nordjysk.wav", "https://filedn.com/lRBwPhPxgV74tO0rDoe8SpH/audio-examples/accent.wav", ], cache_examples=False, theme=gr.themes.Soft(primary_hue="orange"), ) demo.launch()