import json import os import numpy as np import openai import pandas as pd import requests from scipy.spatial.distance import cosine def cosine_similarity(vec1, vec2): try: return 1 - cosine(vec1, vec2) except: print(vec1.shape, vec2.shape) def get_embedding_from_api(word, model="vicuna-7b-v1.1"): if "ada" in model: resp = openai.Embedding.create( model=model, input=word, ) embedding = np.array(resp["data"][0]["embedding"]) return embedding url = "http://localhost:8000/v1/embeddings" headers = {"Content-Type": "application/json"} data = json.dumps({"model": model, "input": word}) response = requests.post(url, headers=headers, data=data) if response.status_code == 200: embedding = np.array(response.json()["data"][0]["embedding"]) return embedding else: print(f"Error: {response.status_code} - {response.text}") return None def create_embedding_data_frame(data_path, model, max_tokens=500): df = pd.read_csv(data_path, index_col=0) df = df[["Time", "ProductId", "UserId", "Score", "Summary", "Text"]] df = df.dropna() df["combined"] = ( "Title: " + df.Summary.str.strip() + "; Content: " + df.Text.str.strip() ) top_n = 1000 df = df.sort_values("Time").tail(top_n * 2) df.drop("Time", axis=1, inplace=True) df["n_tokens"] = df.combined.apply(lambda x: len(x)) df = df[df.n_tokens <= max_tokens].tail(top_n) df["embedding"] = df.combined.apply(lambda x: get_embedding_from_api(x, model)) return df def search_reviews(df, product_description, n=3, pprint=False, model="vicuna-7b-v1.1"): product_embedding = get_embedding_from_api(product_description, model=model) df["similarity"] = df.embedding.apply( lambda x: cosine_similarity(x, product_embedding) ) results = ( df.sort_values("similarity", ascending=False) .head(n) .combined.str.replace("Title: ", "") .str.replace("; Content:", ": ") ) if pprint: for r in results: print(r[:200]) print() return results def print_model_search(input_path, model): print(f"Model: {model}") df = create_embedding_data_frame(input_path, model) print("search: delicious beans") results = search_reviews(df, "delicious beans", n=5, model=model) print(results) print("search: whole wheat pasta") results = search_reviews(df, "whole wheat pasta", n=5, model=model) print(results) print("search: bad delivery") results = search_reviews(df, "bad delivery", n=5, model=model) print(results) input_datapath = "amazon_fine_food_review.csv" if not os.path.exists(input_datapath): raise Exception( f"Please download data from: https://www.kaggle.com/datasets/snap/amazon-fine-food-reviews" ) print_model_search(input_datapath, "vicuna-7b-v1.1") print_model_search(input_datapath, "text-similarity-ada-001") print_model_search(input_datapath, "text-embedding-ada-002")