chywang's picture
Update app.py
cb15c88
raw
history blame
1.58 kB
import gradio as gr
from LdmZhPipeline import LDMZhTextToImagePipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "alibaba-pai/pai-diffusion-poem-large-zh"
pipe_text2img = LDMZhTextToImagePipeline.from_pretrained(model_id, use_auth_token="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")
pipe_text2img = pipe_text2img.to(device)
def infer_text2img(prompt, guide, steps):
output = pipe_text2img(prompt, guidance_scale=guide, num_inference_steps=steps, use_sr=True)
image = output.images[0]
return image
with gr.Blocks() as demo:
examples = [
["远上寒山石径斜 白云深处有人家"],
["停车坐爱枫林晚 霜叶红于二月花"],
["接天莲叶无穷碧 映日荷花别样红"],
]
with gr.Row():
with gr.Column(scale=1, ):
image_out = gr.Image(label = '输出(Output)')
with gr.Column(scale=1, ):
prompt = gr.Textbox(label = '提示词(Prompt)')
submit_btn = gr.Button("生成图像(Generate)")
with gr.Row(scale=0.5 ):
guide = gr.Slider(2, 15, value = 7, label = '文本引导强度(guidance scale)')
steps = gr.Slider(10, 50, value = 20, step = 1, label = '迭代次数(inference steps)')
ex = gr.Examples(examples, fn=infer_text2img, inputs=[prompt, guide, steps], outputs=image_out)
submit_btn.click(fn = infer_text2img, inputs = [prompt, guide, steps], outputs = image_out)
demo.queue(concurrency_count=1, max_size=8).launch()