import torch from transformers import AutoProcessor,AutoModelForCausalLM import gradio as gr device = 'cuda' if torch.cuda.is_available() else 'cpu' processor=AutoProcessor.from_pretrained("alibidaran/General_image_captioning") model=AutoModelForCausalLM.from_pretrained("alibidaran/General_image_captioning").to(device) def generate_caption(image,length): encoded=processor(images=image, return_tensors="pt").to(device) pixels=encoded['pixel_values'].to(device) with torch.no_grad(): generated_ids=model.generate(pixel_values=pixels,max_length=length) generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption demo=gr.Interface( fn=generate_caption, inputs=[ gr.Image(type='pil',flagging_options=["blurry", "incorrect", "other"]), gr.Slider(10,50,value=10) ], outputs= 'label', examples=["sample.jpg","sample1.jpg","sample2.jpg","sample3.jpg","sample4.jpg"] theme=gr.themes.Soft(primary_hue='purple',secondary_hue=gr.themes.colors.gray) ) demo.launch(show_error=True)