Spaces:
Sleeping
Sleeping
alibidaran
commited on
Commit
•
fa5f463
1
Parent(s):
f936973
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GemmaTokenizer
|
3 |
+
import gradio as gr
|
4 |
+
from gradio.themes.base import Base
|
5 |
+
from gradio.themes.utils import colors, fonts, sizes
|
6 |
+
from typing import Iterable
|
7 |
+
|
8 |
+
class SQLGEN(Base):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
*,
|
12 |
+
primary_hue: colors.Color | str = colors.stone,
|
13 |
+
secondary_hue: colors.Color | str = colors.green,
|
14 |
+
neutral_hue: colors.Color | str = colors.gray,
|
15 |
+
spacing_size: sizes.Size | str = sizes.spacing_md,
|
16 |
+
radius_size: sizes.Size | str = sizes.radius_md,
|
17 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
18 |
+
font: fonts.Font
|
19 |
+
| str
|
20 |
+
| Iterable[fonts.Font | str] = (
|
21 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
22 |
+
"ui-sans-serif",
|
23 |
+
"sans-serif",
|
24 |
+
),
|
25 |
+
font_mono: fonts.Font
|
26 |
+
| str
|
27 |
+
| Iterable[fonts.Font | str] = (
|
28 |
+
fonts.GoogleFont("IBM Plex Mono"),
|
29 |
+
"ui-monospace",
|
30 |
+
"monospace",
|
31 |
+
),
|
32 |
+
):
|
33 |
+
super().__init__(
|
34 |
+
primary_hue=primary_hue,
|
35 |
+
secondary_hue=secondary_hue,
|
36 |
+
neutral_hue=neutral_hue,
|
37 |
+
spacing_size=spacing_size,
|
38 |
+
radius_size=radius_size,
|
39 |
+
text_size=text_size,
|
40 |
+
font=font,
|
41 |
+
font_mono=font_mono,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
model_id = "alibidaran/Gemma2_SQLGEN"
|
47 |
+
|
48 |
+
bnb_config = BitsAndBytesConfig(
|
49 |
+
load_in_4bit=True,
|
50 |
+
bnb_4bit_quant_type="nf4",
|
51 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
52 |
+
)
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0})
|
56 |
+
tokenizer.padding_side = 'right'
|
57 |
+
|
58 |
+
|
59 |
+
def generate_sql(query,context):
|
60 |
+
prompt = query
|
61 |
+
context=context
|
62 |
+
text=f"<s>##Question: {prompt} \n ##Context: {context} \n ##Answer:"
|
63 |
+
inputs=tokenizer(text,return_tensors='pt').to('cuda')
|
64 |
+
with torch.no_grad():
|
65 |
+
outputs=model.generate(**inputs,max_new_tokens=100,do_sample=True,top_p=0.99,top_k=10,temperature=0.5)
|
66 |
+
output_text=outputs[:, inputs.input_ids.shape[1]:]
|
67 |
+
output_text=tokenizer.decode(output_text[0], skip_special_tokens=True)
|
68 |
+
return output_text
|
69 |
+
|
70 |
+
|
71 |
+
interface=gr.Interface(generate_sql,['text','text'],gr.Code(),title='SQLGEN', theme=SQLGEN())
|
72 |
+
|
73 |
+
if __name__=='__main__':
|
74 |
+
interface.launch()
|