Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
#dosyayı py olarak kaydet ve komut satırını kullanarak streamlit run streamlit.py | |
import streamlit as st | |
from tensorflow.keras.models import load_model | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
model=load_model('date_fruit_class_cnn.h5') | |
def process_image(img): | |
img=img.resize((224,224)) | |
img=np.array(img) | |
img=img[:,:, :3] # Remove the alpha channel | |
img=img/255.0 | |
img=np.expand_dims(img,axis=0) | |
return img | |
st.title('Date Fruit Classification') | |
st.write('Please choose an image so that the AI model can predict the type of date.') | |
file=st.file_uploader('Pick an image', type= ['jpg','jpeg','png']) | |
class_names=['Ajwa', 'Medjool','Nabtat Ali', 'Shaishe', 'Sugaey', 'Galaxy', 'Meneifi','Rutab', 'Sokari'] | |
if file is not None: | |
img=Image.open(file) | |
st.image(img,caption='The image: ') | |
image=process_image(img) | |
prediction=model.predict(image) | |
predicted_class=np.argmax(prediction) | |
st.write('Probability Distribution') | |
st.write(prediction) | |
st.write("Prediction: ",class_names[predicted_class]) |