#!/usr/bin/env python # coding: utf-8 #dosyayı py olarak kaydet ve komut satırını kullanarak streamlit run streamlit.py import streamlit as st from tensorflow.keras.models import load_model from PIL import Image import numpy as np import cv2 model=load_model('date_fruit_class_cnn.h5') def process_image(img): img=img.resize((224,224)) img=np.array(img) img=img[:,:, :3] # Remove the alpha channel img=img/255.0 img=np.expand_dims(img,axis=0) return img st.title('Date Fruit Classification') st.write('Please choose an image so that the AI model can predict the type of date.') file=st.file_uploader('Pick an image', type= ['jpg','jpeg','png']) class_names=['Ajwa', 'Medjool','Nabtat Ali', 'Shaishe', 'Sugaey', 'Galaxy', 'Meneifi','Rutab', 'Sokari'] if file is not None: img=Image.open(file) st.image(img,caption='The image: ') image=process_image(img) prediction=model.predict(image) predicted_class=np.argmax(prediction) st.write('Probability Distribution') st.write(prediction) st.write("Prediction: ",class_names[predicted_class])