File size: 31,829 Bytes
e44dff4 09b13a5 13907ea 09b13a5 13907ea 09b13a5 13907ea 09b13a5 13907ea 09b13a5 13907ea 09b13a5 13907ea 9dc118b 6282b8b ea1705a 6282b8b 6e158d7 e44dff4 6e158d7 bde5538 8270859 8fe0c4a ea1705a 11a8e77 ea1705a 6282b8b 8fe0c4a ea1705a 8fe0c4a ea1705a 8fe0c4a ea1705a 09b13a5 ea1705a 09b13a5 ea1705a 09b13a5 8fe0c4a 6282b8b 8fe0c4a 6282b8b 8fe0c4a ea1705a 8fe0c4a 6282b8b 8fe0c4a 6282b8b b722033 ad31de9 be7b4da 4a865a4 be7b4da e44dff4 13907ea be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da e44dff4 be7b4da 4a865a4 8270859 ad31de9 11edc3b e44dff4 ad31de9 c5baded d051573 c5baded 37dd487 c5baded ad31de9 ea1705a ad31de9 09b13a5 ad31de9 ea1705a ad31de9 f6b1769 ad31de9 11edc3b 0bf1a6a ea1705a 37dd487 d051573 e44dff4 d051573 e44dff4 0bf1a6a e44dff4 0bf1a6a e44dff4 0bf1a6a e44dff4 0bf1a6a e44dff4 0bf1a6a e44dff4 0bf1a6a ad31de9 f001673 ad31de9 e44dff4 d97267e be7b4da e44dff4 be7b4da ad31de9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 |
# # #################
# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# from collections import OrderedDict
# import flwr as fl
# from logging import INFO, DEBUG
# from flwr.common.logger import log
# import logging
# import re
# import plotly.graph_objects as go
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# fl.common.logger.configure(identifier="myFlowerExperiment", filename="./log.txt")
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
# raw_datasets = load_dataset(dataset_name)
# raw_datasets = raw_datasets.shuffle(seed=42)
# del raw_datasets["unsupervised"]
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# def tokenize_function(examples):
# return tokenizer(examples["text"], truncation=True)
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
# tokenized_datasets = tokenized_datasets.remove_columns("text")
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
# train_datasets = []
# test_datasets = []
# for _ in range(num_clients):
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
# train_datasets.append(train_dataset)
# test_datasets.append(test_dataset)
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
# return train_datasets, test_datasets, data_collator, raw_datasets
# def train(net, trainloader, epochs):
# optimizer = AdamW(net.parameters(), lr=5e-5)
# net.train()
# for _ in range(epochs):
# for batch in trainloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# outputs = net(**batch)
# loss = outputs.loss
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# def test(net, testloader):
# metric = load_metric("accuracy")
# net.eval()
# loss = 0
# for batch in testloader:
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
# with torch.no_grad():
# outputs = net(**batch)
# logits = outputs.logits
# loss += outputs.loss.item()
# predictions = torch.argmax(logits, dim=-1)
# metric.add_batch(predictions=predictions, references=batch["labels"])
# loss /= len(testloader)
# accuracy = metric.compute()["accuracy"]
# return loss, accuracy
# class CustomClient(fl.client.NumPyClient):
# def __init__(self, net, trainloader, testloader, client_id):
# self.net = net
# self.trainloader = trainloader
# self.testloader = testloader
# self.client_id = client_id
# self.losses = []
# self.accuracies = []
# def get_parameters(self, config):
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
# def set_parameters(self, parameters):
# params_dict = zip(self.net.state_dict().keys(), parameters)
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
# self.net.load_state_dict(state_dict, strict=True)
# def fit(self, parameters, config):
# log(INFO, f"Client {self.client_id} is starting fit()")
# self.set_parameters(parameters)
# train(self.net, self.trainloader, epochs=1)
# loss, accuracy = test(self.net, self.testloader)
# self.losses.append(loss)
# self.accuracies.append(accuracy)
# log(INFO, f"Client {self.client_id} finished fit() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
# return self.get_parameters(config={}), len(self.trainloader.dataset), {"loss": loss, "accuracy": accuracy}
# def evaluate(self, parameters, config):
# log(INFO, f"Client {self.client_id} is starting evaluate()")
# self.set_parameters(parameters)
# loss, accuracy = test(self.net, self.testloader)
# log(INFO, f"Client {self.client_id} finished evaluate() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy), "loss": float(loss)}
# def plot_metrics(self, round_num, plot_placeholder):
# if self.losses and self.accuracies:
# plot_placeholder.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
# plot_placeholder.write(f"Loss: {self.losses[-1]:.4f}")
# plot_placeholder.write(f"Accuracy: {self.accuracies[-1]:.4f}")
# fig, ax1 = plt.subplots()
# color = 'tab:red'
# ax1.set_xlabel('Round')
# ax1.set_ylabel('Loss', color=color)
# ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
# ax1.tick_params(axis='y', labelcolor=color)
# ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
# color = 'tab:blue'
# ax2.set_ylabel('Accuracy', color=color)
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
# ax2.tick_params(axis='y', labelcolor=color)
# fig.tight_layout()
# plot_placeholder.pyplot(fig)
# def read_log_file(log_path='./log.txt'):
# with open(log_path, 'r') as file:
# log_lines = file.readlines()
# return log_lines
# def parse_log(log_lines):
# rounds = []
# clients = {}
# memory_usage = []
# round_pattern = re.compile(r'ROUND (\d+)')
# client_pattern = re.compile(r'Client (\d+) \| (INFO|DEBUG) \| (.*)')
# memory_pattern = re.compile(r'memory used=(\d+\.\d+)GB')
# current_round = None
# for line in log_lines:
# round_match = round_pattern.search(line)
# client_match = client_pattern.search(line)
# memory_match = memory_pattern.search(line)
# if round_match:
# current_round = int(round_match.group(1))
# rounds.append(current_round)
# elif client_match:
# client_id = int(client_match.group(1))
# log_level = client_match.group(2)
# message = client_match.group(3)
# if client_id not in clients:
# clients[client_id] = {'rounds': [], 'messages': []}
# clients[client_id]['rounds'].append(current_round)
# clients[client_id]['messages'].append((log_level, message))
# elif memory_match:
# memory_usage.append(float(memory_match.group(1)))
# return rounds, clients, memory_usage
# def plot_metrics(rounds, clients, memory_usage):
# st.write("## Metrics Overview")
# st.write("### Memory Usage")
# plt.figure()
# plt.plot(range(len(memory_usage)), memory_usage, label='Memory Usage (GB)')
# plt.xlabel('Step')
# plt.ylabel('Memory Usage (GB)')
# plt.legend()
# st.pyplot(plt)
# for client_id, data in clients.items():
# st.write(f"### Client {client_id} Metrics")
# info_messages = [msg for level, msg in data['messages'] if level == 'INFO']
# debug_messages = [msg for level, msg in data['messages'] if level == 'DEBUG']
# st.write("#### INFO Messages")
# for msg in info_messages:
# st.write(msg)
# st.write("#### DEBUG Messages")
# for msg in debug_messages:
# st.write(msg)
# # Placeholder for actual loss and accuracy values, assuming they're included in the messages
# losses = [float(re.search(r'loss=([\d\.]+)', msg).group(1)) for msg in debug_messages if 'loss=' in msg]
# accuracies = [float(re.search(r'accuracy=([\d\.]+)', msg).group(1)) for msg in debug_messages if 'accuracy=' in msg]
# if losses:
# plt.figure()
# plt.plot(data['rounds'], losses, label='Loss')
# plt.xlabel('Round')
# plt.ylabel('Loss')
# plt.legend()
# st.pyplot(plt)
# if accuracies:
# plt.figure()
# plt.plot(data['rounds'], accuracies, label='Accuracy')
# plt.xlabel('Round')
# plt.ylabel('Accuracy')
# plt.legend()
# st.pyplot(plt)
# def read_log_file2():
# with open("./log.txt", "r") as file:
# return file.read()
# def main():
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
# logs = read_log_file2()
# # cleanLogs = # Define a pattern to match relevant log entries
# pattern = re.compile(r"memory|loss|accuracy|round|client", re.IGNORECASE)
# # Filter the log data
# filtered_logs = [line for line in logs.splitlines() if pattern.search(line)]
# st.markdown(filtered_logs)
# # Provide a download button for the logs
# st.download_button(
# label="Download Logs",
# data="\n".join(filtered_logs),
# file_name="./log.txt",
# mime="text/plain"
# )
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
# model_name = st.selectbox("Model", ["bert-base-uncased", "facebook/hubert-base-ls960", "distilbert-base-uncased"])
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
# train_datasets, test_datasets, data_collator, raw_datasets = load_data(dataset_name, num_clients=NUM_CLIENTS)
# trainloaders = []
# testloaders = []
# clients = []
# for i in range(NUM_CLIENTS):
# st.write(f"### Client {i+1} Datasets")
# train_df = pd.DataFrame(train_datasets[i])
# test_df = pd.DataFrame(test_datasets[i])
# st.write("#### Train Dataset (Words)")
# st.dataframe(raw_datasets["train"].select(random.sample(range(len(raw_datasets["train"])), 20)))
# st.write("#### Train Dataset (Tokens)")
# edited_train_df = st.data_editor(train_df, key=f"train_{i}")
# st.write("#### Test Dataset (Words)")
# st.dataframe(raw_datasets["test"].select(random.sample(range(len(raw_datasets["test"])), 20)))
# st.write("#### Test Dataset (Tokens)")
# edited_test_df = st.data_editor(test_df, key=f"test_{i}")
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
# trainloaders.append(trainloader)
# testloaders.append(testloader)
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
# client = CustomClient(net, trainloader, testloader, client_id=i+1)
# clients.append(client)
# if st.button("Start Training"):
# def client_fn(cid):
# return clients[int(cid)].to_client()
# def weighted_average(metrics):
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
# examples = [num_examples for num_examples, _ in metrics]
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
# strategy = fl.server.strategy.FedAvg(
# fraction_fit=1.0,
# fraction_evaluate=1.0,
# evaluate_metrics_aggregation_fn=weighted_average,
# )
# for round_num in range(NUM_ROUNDS):
# st.write(f"### Round {round_num + 1} ✅")
# logs = read_log_file2()
# filtered_log_list = [line for line in logs.splitlines() if pattern.search(line)]
# filtered_logs = "\n".join(filtered_log_list)
# st.markdown(filtered_logs)
# # Provide a download button for the logs
# # st.download_button(
# # label="Download Logs",
# # data=logs,
# # file_name="./log.txt",
# # mime="text/plain"
# # )
# # # Extract relevant data
# accuracy_pattern = re.compile(r"'accuracy': \{(\d+), ([\d.]+)\}")
# loss_pattern = re.compile(r"'loss': \{(\d+), ([\d.]+)\}")
# accuracy_matches = accuracy_pattern.findall(filtered_logs)
# loss_matches = loss_pattern.findall(filtered_logs)
# rounds = [int(match[0]) for match in accuracy_matches]
# accuracies = [float(match[1]) for match in accuracy_matches]
# losses = [float(match[1]) for match in loss_matches]
# # Create accuracy plot
# accuracy_fig = go.Figure()
# accuracy_fig.add_trace(go.Scatter(x=rounds, y=accuracies, mode='lines+markers', name='Accuracy'))
# accuracy_fig.update_layout(title='Accuracy over Rounds', xaxis_title='Round', yaxis_title='Accuracy')
# # Create loss plot
# loss_fig = go.Figure()
# loss_fig.add_trace(go.Scatter(x=rounds, y=losses, mode='lines+markers', name='Loss'))
# loss_fig.update_layout(title='Loss over Rounds', xaxis_title='Round', yaxis_title='Loss')
# # Display plots in Streamlit
# st.plotly_chart(accuracy_fig)
# st.plotly_chart(loss_fig)
# # Display data table
# data = {
# 'Round': rounds,
# 'Accuracy': accuracies,
# 'Loss': losses
# }
# df = pd.DataFrame(data)
# st.write("## Training Metrics")
# st.table(df)
# plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
# fl.simulation.start_simulation(
# client_fn=client_fn,
# num_clients=NUM_CLIENTS,
# config=fl.server.ServerConfig(num_rounds=1),
# strategy=strategy,
# client_resources={"num_cpus": 1, "num_gpus": (1 if torch.cuda.is_available() else 0)},
# ray_init_args={"log_to_driver": True, "num_cpus": 1, "num_gpus": (1 if torch.cuda.is_available() else 0)}
# )
# for i, client in enumerate(clients):
# client.plot_metrics(round_num + 1, plot_placeholders[i])
# st.write(" ")
# st.success("Training completed successfully!")
# # Display final metrics
# st.write("## Final Client Metrics")
# for client in clients:
# st.write(f"### Client {client.client_id}")
# if client.losses and client.accuracies:
# st.write(f"Final Loss: {client.losses[-1]:.4f}")
# st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
# client.plot_metrics(NUM_ROUNDS, st.empty())
# else:
# st.write("No metrics available.")
# st.write(" ")
# # Display log.txt content
# st.write("## Training Log")
# st.write(read_log_file2())
# st.write("## Training Log Analysis")
# log_lines = read_log_file()
# rounds, clients, memory_usage = parse_log(log_lines)
# plot_metrics(rounds, clients, memory_usage)
# else:
# st.write("Click the 'Start Training' button to start the training process.")
# if __name__ == "__main__":
# main()
import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AdamW
from transformers import T5Tokenizer, T5ForConditionalGeneration
from datasets import load_dataset, Dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import pandas as pd
import random
from collections import OrderedDict
import flwr as fl
from logging import INFO, DEBUG
from flwr.common.logger import log
import logging
import re
import plotly.graph_objects as go
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
fl.common.logger.configure(identifier="myFlowerExperiment", filename="./log.txt")
class CustomDataCollator:
def __init__(self, pad_token_id=0):
self.pad_token_id = pad_token_id
def __call__(self, features):
max_length = max(len(f["input_ids"]) for f in features)
for f in features:
f['input_ids'] += [self.pad_token_id] * (max_length - len(f['input_ids']))
batch = {k: torch.tensor([f[k] for f in features]) for k in features[0].keys()}
return batch
def load_data(dataset_name, train_size=20, test_size=20, num_clients=2, use_utf8=False, model_name="bert-base-uncased"):
raw_datasets = load_dataset(dataset_name)
raw_datasets = raw_datasets.shuffle(seed=42)
del raw_datasets["unsupervised"]
if model_name == "google/byt5-small":
tokenizer = T5Tokenizer.from_pretrained(model_name)
def utf8_encode_function(examples):
examples["input_ids"] = [tokenizer(text.encode('utf-8'), return_tensors="pt")["input_ids"].squeeze().tolist() for text in examples["text"]]
return examples
tokenized_datasets = raw_datasets.map(utf8_encode_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns("text")
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
else:
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns("text")
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
train_datasets = []
test_datasets = []
for _ in range(num_clients):
train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
train_datasets.append(train_dataset)
test_datasets.append(test_dataset)
data_collator = CustomDataCollator(pad_token_id=tokenizer.pad_token_id)
return train_datasets, test_datasets, data_collator, raw_datasets
def train(net, trainloader, epochs):
optimizer = AdamW(net.parameters(), lr=5e-5)
net.train()
for _ in range(epochs):
for batch in trainloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
outputs = net(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
def test(net, testloader):
metric = load_metric("accuracy")
net.eval()
loss = 0
for batch in testloader:
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.no_grad():
outputs = net(**batch)
logits = outputs.logits
loss += outputs.loss.item()
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
loss /= len(testloader)
accuracy = metric.compute()["accuracy"]
return loss, accuracy
class CustomClient(fl.client.NumPyClient):
def __init__(self, net, trainloader, testloader, client_id):
self.net = net
self.trainloader = trainloader
self.testloader = testloader
self.client_id = client_id
self.losses = []
self.accuracies = []
def get_parameters(self, config):
return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
def set_parameters(self, parameters):
params_dict = zip(self.net.state_dict().keys(), parameters)
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
self.net.load_state_dict(state_dict, strict=True)
def fit(self, parameters, config):
log(INFO, f"Client {self.client_id} is starting fit()")
self.set_parameters(parameters)
train(self.net, self.trainloader, epochs=1)
loss, accuracy = test(self.net, self.testloader)
self.losses.append(loss)
self.accuracies.append(accuracy)
log(INFO, f"Client {self.client_id} finished fit() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
return self.get_parameters(config={}), len(self.trainloader.dataset), {"loss": loss, "accuracy": accuracy}
def evaluate(self, parameters, config):
log(INFO, f"Client {self.client_id} is starting evaluate()")
self.set_parameters(parameters)
loss, accuracy = test(self.net, self.testloader)
log(INFO, f"Client {self.client_id} finished evaluate() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy), "loss": float(loss)}
def plot_metrics(self, round_num, plot_placeholder):
if self.losses and self.accuracies:
plot_placeholder.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
plot_placeholder.write(f"Loss: {self.losses[-1]:.4f}")
plot_placeholder.write(f"Accuracy: {self.accuracies[-1]:.4f}")
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel('Round')
ax1.set_ylabel('Loss', color=color)
ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
ax1.tick_params(axis='y', labelcolor=color)
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
color = 'tab:blue'
ax2.set_ylabel('Accuracy', color=color)
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout()
plot_placeholder.pyplot(fig)
def read_log_file(log_path='./log.txt'):
with open(log_path, 'r') as file:
log_lines = file.readlines()
return log_lines
def parse_log(log_lines):
rounds = []
clients = {}
memory_usage = []
round_pattern = re.compile(r'ROUND (\d+)')
client_pattern = re.compile(r'Client (\d+) \| (INFO|DEBUG) \| (.*)')
memory_pattern = re.compile(r'memory used=(\d+\.\d+)GB')
current_round = None
for line in log_lines:
round_match = round_pattern.search(line)
client_match = client_pattern.search(line)
memory_match = memory_pattern.search(line)
if round_match:
current_round = int(round_match.group(1))
rounds.append(current_round)
elif client_match:
client_id = int(client_match.group(1))
log_level = client_match.group(2)
message = client_match.group(3)
if client_id not in clients:
clients[client_id] = {'rounds': [], 'messages': []}
clients[client_id]['rounds'].append(current_round)
clients[client_id]['messages'].append((log_level, message))
elif memory_match:
memory_usage.append(float(memory_match.group(1)))
return rounds, clients, memory_usage
def plot_metrics(rounds, clients, memory_usage):
st.write("## Metrics Overview")
st.write("### Memory Usage")
plt.figure()
plt.plot(range(len(memory_usage)), memory_usage, label='Memory Usage (GB)')
plt.xlabel('Step')
plt.ylabel('Memory Usage (GB)')
plt.legend()
st.pyplot(plt)
for client_id, data in clients.items():
st.write(f"### Client {client_id} Metrics")
info_messages = [msg for level, msg in data['messages'] if level == 'INFO']
debug_messages = [msg for level, msg in data['messages'] if level == 'DEBUG']
st.write("#### INFO Messages")
for msg in info_messages:
st.write(msg)
st.write("#### DEBUG Messages")
for msg in debug_messages:
st.write(msg)
# Placeholder for actual loss and accuracy values, assuming they're included in the messages
losses = [float(re.search(r'loss=([\d\.]+)', msg).group(1)) for msg in debug_messages if 'loss=' in msg]
accuracies = [float(re.search(r'accuracy=([\d\.]+)', msg).group(1)) for msg in debug_messages if 'accuracy=' in msg]
if losses:
plt.figure()
plt.plot(data['rounds'], losses, label='Loss')
plt.xlabel('Round')
plt.ylabel('Loss')
plt.legend()
st.pyplot(plt)
if accuracies:
plt.figure()
plt.plot(data['rounds'], accuracies, label='Accuracy')
plt.xlabel('Round')
plt.ylabel('Accuracy')
plt.legend()
st.pyplot(plt)
def read_log_file2():
with open("./log.txt", "r") as file:
return file.read()
def main():
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
logs = read_log_file2()
pattern = re.compile(r"memory|loss|accuracy|round|client", re.IGNORECASE)
filtered_logs = [line for line in logs.splitlines() if pattern.search(line)]
st.markdown(filtered_logs)
st.download_button(
label="Download Logs",
data="\n".join(filtered_logs),
file_name="./log.txt",
mime="text/plain"
)
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
model_name = st.selectbox("Model", ["bert-base-uncased", "facebook/hubert-base-ls960", "distilbert-base-uncased", "google/byt5-small"])
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
use_utf8 = st.checkbox("Train on Byte UTF-8 Dataset", value=False)
train_datasets, test_datasets, data_collator, raw_datasets = load_data(dataset_name, num_clients=NUM_CLIENTS, use_utf8=use_utf8, model_name=model_name)
trainloaders = []
testloaders = []
clients = []
for i in range(NUM_CLIENTS):
st.write(f"### Client {i+1} Datasets")
train_df = pd.DataFrame(train_datasets[i])
test_df = pd.DataFrame(test_datasets[i])
st.write("#### Train Dataset (Words)")
st.dataframe(raw_datasets["train"].select(random.sample(range(len(raw_datasets["train"])), 20)))
st.write("#### Train Dataset (Tokens)")
edited_train_df = st.data_editor(train_df, key=f"train_{i}")
st.write("#### Test Dataset (Words)")
st.dataframe(raw_datasets["test"].select(random.sample(range(len(raw_datasets["test"])), 20)))
st.write("#### Test Dataset (Tokens)")
edited_test_df = st.data_editor(test_df, key=f"test_{i}")
edited_train_dataset = Dataset.from_pandas(edited_train_df)
edited_test_dataset = Dataset.from_pandas(edited_test_df)
trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
client = CustomClient(net, trainloader, testloader, client_id=i+1)
clients.append(client)
if st.button("Start Training"):
def client_fn(cid):
return clients[int(cid)].to_client()
def weighted_average(metrics):
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
losses = [num_examples * m["loss"] for num_examples, m in metrics]
examples = [num_examples for num_examples, _ in metrics]
return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
strategy = fl.server.strategy.FedAvg(
fraction_fit=1.0,
fraction_evaluate=1.0,
evaluate_metrics_aggregation_fn=weighted_average,
)
for round_num in range(NUM_ROUNDS):
st.write(f"### Round {round_num + 1} ✅")
logs = read_log_file2()
filtered_log_list = [line for line in logs.splitlines() if pattern.search(line)]
filtered_logs = "\n".join(filtered_log_list)
st.markdown(filtered_logs)
accuracy_pattern = re.compile(r"'accuracy': \{(\d+), ([\d.]+)\}")
loss_pattern = re.compile(r"'loss': \{(\d+), ([\d.]+)\}")
accuracy_matches = accuracy_pattern.findall(filtered_logs)
loss_matches = loss_pattern.findall(filtered_logs)
rounds = [int(match[0]) for match in accuracy_matches]
accuracies = [float(match[1]) for match in accuracy_matches]
losses = [float(match[1]) for match in loss_matches]
accuracy_fig = go.Figure()
accuracy_fig.add_trace(go.Scatter(x=rounds, y=accuracies, mode='lines+markers', name='Accuracy'))
accuracy_fig.update_layout(title='Accuracy over Rounds', xaxis_title='Round', yaxis_title='Accuracy')
loss_fig = go.Figure()
loss_fig.add_trace(go.Scatter(x=rounds, y=losses, mode='lines+markers', name='Loss'))
loss_fig.update_layout(title='Loss over Rounds', xaxis_title='Round', yaxis_title='Loss')
st.plotly_chart(accuracy_fig)
st.plotly_chart(loss_fig)
data = {
'Round': rounds,
'Accuracy': accuracies,
'Loss': losses
}
df = pd.DataFrame(data)
st.write("## Training Metrics")
st.table(df)
plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
fl.simulation.start_simulation(
client_fn=client_fn,
num_clients=NUM_CLIENTS,
config=fl.server.ServerConfig(num_rounds=1),
strategy=strategy,
client_resources={"num_cpus": 1, "num_gpus": (1 if torch.cuda.is_available() else 0)},
ray_init_args={"log_to_driver": True, "num_cpus": 1, "num_gpus": (1 if torch.cuda.is_available() else 0)}
)
for i, client in enumerate(clients):
client.plot_metrics(round_num + 1, plot_placeholders[i])
st.write(" ")
st.success("Training completed successfully!")
st.write("## Final Client Metrics")
for client in clients:
st.write(f"### Client {client.client_id}")
if client.losses and client.accuracies:
st.write(f"Final Loss: {client.losses[-1]:.4f}")
st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
client.plot_metrics(NUM_ROUNDS, st.empty())
else:
st.write("No metrics available.")
st.write(" ")
st.write("## Training Log")
st.write(read_log_file2())
st.write("## Training Log Analysis")
log_lines = read_log_file()
rounds, clients, memory_usage = parse_log(log_lines)
plot_metrics(rounds, clients, memory_usage)
else:
st.write("Click the 'Start Training' button to start the training process.")
if __name__ == "__main__":
main()
|