File size: 7,785 Bytes
4157c65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import openai
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
from langchain.llms import OpenAI
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import Docx2txtLoader
from langchain.schema import Document 
import requests
import json
import pinecone
from pypdf import PdfReader
from langchain.llms.openai import OpenAI
from langchain.chains.summarize import load_summarize_chain
import numpy as np
import re
import requests
from transformers import BertTokenizerFast, BertLMHeadModel
from transformers import pipeline

#Extract Information from PDF file
def get_pdf_text(filename):
    text = ""
    pdf_ = PdfReader(filename)
    for page in pdf_.pages:
        text += page.extract_text()
    return text



# iterate over files in
# that user uploaded PDF files, one by one

def create_docs(user_file_list, unique_id):
  docs = []
  for filename in user_file_list:

      ext = filename.split(".")[-1]

      # Use TextLoader for .txt files
      if ext == "txt":

          loader = TextLoader(filename)
          doc = loader.load()

      # Use HTMLLoader for .html files
      elif ext == "html":
          loader = UnstructuredHTMLLoader(filename)
          doc = loader.load()

      # Use PDFLoader for .pdf files
      elif ext == "pdf":
          loader = PyPDFLoader(filename)
          doc = loader.load()

      elif ext == "docx":
          loader = Docx2txtLoader(filename)
          doc = loader.load()

      elif ext == "md":
          loader = UnstructuredMarkdownLoader(filename)
          doc = loader.load()
      # Skip other file types
      else:
          continue
      docs.append(Document( page_content= doc[0].page_content , metadata={"name": f"{filename}" , "unique_id":unique_id } ) )

  return docs


# def create_docs(user_pdf_list, unique_id):
#   docs = []
#   for filename in user_pdf_list:
#       docs.append(Document( page_content= get_pdf_text(filename), metadata={"name": f"{filename}" , "unique_id":unique_id } ) )
#       docs.append(get_pdf_text(filename))
      
#   return docs



#Create embeddings instance
def create_embeddings_load_data():
    #embeddings = OpenAIEmbeddings()
    embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") #  384
    return embeddings


#Function to push data to Vector Store - Pinecone here
def push_to_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,docs):

    pinecone.init(
    api_key=pinecone_apikey,
    environment=pinecone_environment
    )
    print("done......2")
    Pinecone.from_documents(docs, embeddings, index_name=pinecone_index_name)
    


#Function to pull infrmation from Vector Store - Pinecone here
def pull_from_pinecone(pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings):

    pinecone.init(
    api_key=pinecone_apikey,
    environment=pinecone_environment
    )

    index_name = pinecone_index_name

    index = Pinecone.from_existing_index(index_name, embeddings)
    return index


def similar_docs_hf(query, final_docs_list, k):

    HF_KEY = "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"
    
    headers = {"Authorization": f"Bearer {HF_KEY}"}
    API_URL = "https://api-inference.huggingface.co/models/sentence-transformers/all-MiniLM-L6-v2"

    payload = {
        "inputs": {
            "source_sentence": query, # query
            "sentences": final_docs_list
        }
      }
    response = requests.post(API_URL, headers=headers, json=payload)

    score_list = response.json()

    
    pairs = list(zip( score_list , final_docs_list))

    # Sort the pairs in descending order of the first element of each pair
    pairs.sort(key=lambda x: x[0], reverse=True)

    # Unzip the pairs back into two lists
    score_list , final_docs_list = zip(*pairs)
    # sorted_list[:k] ,
    return    score_list , final_docs_list 


#Function to help us get relavant documents from vector store - based on user input
def similar_docs(query,k,pinecone_apikey,pinecone_environment,pinecone_index_name,embeddings,unique_id):

    pinecone.init(
    api_key=pinecone_apikey,
    environment=pinecone_environment
    )

    index_name = pinecone_index_name

    index = pull_from_pinecone(pinecone_apikey,pinecone_environment,index_name,embeddings)
    similar_docs = index.similarity_search_with_score(query, int(k),{"unique_id":unique_id})
    #print(similar_docs)
    return similar_docs


def get_score(relevant_docs):
  scores = []
  for doc in relevant_docs:
      scores.append(doc[1])

  return scores


def metadata_filename( document ) : 
   
   names = [ ]
   for doc in document: 
    
        text = str(doc[0].metadata["name"] )
        pattern = r"name=\'(.*?)\'"
        matches = re.findall(pattern, text)
        names.append(matches) 

   return names

def docs_content(relevant_docs):
    content = [] 
    for doc in relevant_docs:    
        content.append(doc[0].page_content)

    return content
      
def docs_summary(relevant_docs ):
    documents = []
    summary = [ ] 

    for doc in relevant_docs:     
        documents.append(doc[0].page_content)

    for document in documents :
           summary.append( document )
    return summary


def get_summary_hf(target) :


    # Specify the model name
    model_name = "bert-base-uncased"

    # Load the BERT tokenizer and model
    tokenizer = BertTokenizerFast.from_pretrained(model_name)
    model = BertLMHeadModel.from_pretrained(model_name)

    # Initialize the summarization pipeline
    summarizer = pipeline('summarization', model=model, tokenizer=tokenizer)

    # Use the pipeline to summarize the text
    summary = summarizer(str(target), max_length=150, min_length=25, do_sample=False)

    return summary


# def get_summary_hf( document ):

#   HF_KEY = "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"
#   API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
#   headers = {"Authorization": f"Bearer {HF_KEY}"}
#   payload = {
#         "inputs": {
#             "inputs":  document ,
#              "parameters": {"do_sample": False}
#         }
#       }
    
#   response = requests.post(API_URL, headers=headers, json=payload)
#   return response.json()

# Helps us get the summary of a document


def get_summary(current_doc):

    llm = OpenAI(temperature=0 )

    
    # url = "https://api.openai.com/v1/chat/completions"
    # headers = {
    # 'Content-Type': 'application/json',
    # 'Authorization': 'OPENAI_API_KEY'
    # }
    # data = {
    #     "model": "gpt-3.5-turbo",
    #     "messages": [
    #     {"role": "user", "content": f"Summarize this text : {current_doc}" }
    #     ],
    #     "temperature": 0.7
    #     }

    # response = requests.post(url, headers=headers, data=json.dumps(data))


    # completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": f"Summarize this text : {current_doc}"}]) 
    # summary = response
    # llm = HuggingFaceHub(repo_id="bigscience/bloom", model_kwargs={"temperature":1e-10})
    chain = load_summarize_chain(llm, chain_type="map_reduce") 
    summary = chain.run([current_doc])
    # print(summary)
    return summary 


    # client = OpenAI()
    # response = client.chat.completions.create(
    #     model="gpt-3.5-turbo",
    #     messages=[
    #     {"role": "system", "content": f"{current_doc}" },
    #     {"role": "user", "content": "Summarize the following text: '{text_to_summarize}'"},
    # ])

    # return response['choices'][0]['message']['content'] 
    #