Change preprocessing function
Browse files- app.py +10 -5
- requirements.txt +1 -0
app.py
CHANGED
@@ -3,15 +3,18 @@ import random
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from torch import nn
|
6 |
-
from
|
7 |
-
|
8 |
|
9 |
|
10 |
MODEL_PATH="./best_model_test/"
|
11 |
|
12 |
device = torch.device("cpu")
|
13 |
|
14 |
-
preprocessor =
|
|
|
|
|
|
|
15 |
model = SegformerForSemanticSegmentation.from_pretrained(MODEL_PATH)
|
16 |
model.eval()
|
17 |
|
@@ -43,8 +46,9 @@ def visualize_instance_seg_mask(mask):
|
|
43 |
def query_image(img):
|
44 |
"""Función para generar predicciones a la escala origina"""
|
45 |
inputs = preprocessor(images=img, return_tensors="pt")
|
|
|
46 |
with torch.no_grad():
|
47 |
-
preds = model(
|
48 |
preds_upscale = upscale_logits(preds, preds.shape[2])
|
49 |
predict_label = torch.argmax(preds_upscale, dim=1).to(device)
|
50 |
result = predict_label[0,:,:].detach().cpu().numpy()
|
@@ -55,7 +59,8 @@ demo = gr.Interface(
|
|
55 |
query_image,
|
56 |
inputs=[gr.Image(type="pil")],
|
57 |
outputs="image",
|
58 |
-
title="
|
|
|
59 |
)
|
60 |
|
61 |
demo.launch()
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
from torch import nn
|
6 |
+
from torchvision import transforms
|
7 |
+
from transformers import SegformerForSemanticSegmentation)
|
8 |
|
9 |
|
10 |
MODEL_PATH="./best_model_test/"
|
11 |
|
12 |
device = torch.device("cpu")
|
13 |
|
14 |
+
preprocessor = transforms.Compose([
|
15 |
+
transforms.resize(128),
|
16 |
+
transforms.ToTensor()
|
17 |
+
])
|
18 |
model = SegformerForSemanticSegmentation.from_pretrained(MODEL_PATH)
|
19 |
model.eval()
|
20 |
|
|
|
46 |
def query_image(img):
|
47 |
"""Función para generar predicciones a la escala origina"""
|
48 |
inputs = preprocessor(images=img, return_tensors="pt")
|
49 |
+
inputs = preprocessor(img).unsqueeze(0)
|
50 |
with torch.no_grad():
|
51 |
+
preds = model(inputs)["logits"]
|
52 |
preds_upscale = upscale_logits(preds, preds.shape[2])
|
53 |
predict_label = torch.argmax(preds_upscale, dim=1).to(device)
|
54 |
result = predict_label[0,:,:].detach().cpu().numpy()
|
|
|
59 |
query_image,
|
60 |
inputs=[gr.Image(type="pil")],
|
61 |
outputs="image",
|
62 |
+
title="Skyguard: segmentador de glaciares de roca 🛰️ +️ 🛡️ ️",
|
63 |
+
description="Modelo de segmentación de imágenes para detectar glaciares de roca.<br> Se entrenó un modelo [nvidia/SegFormer](https://huggingface.co/nvidia/mit-b0) con _fine-tuning_ en el [rock-glacier-dataset](https://huggingface.co/datasets/alkzar90/rock-glacier-dataset)"
|
64 |
)
|
65 |
|
66 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
torch
|
|
|
2 |
transformers
|
3 |
numpy
|
|
|
1 |
torch
|
2 |
+
torchvision
|
3 |
transformers
|
4 |
numpy
|