create an image segmentation model
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import (SegformerFeatureExtractor,
|
4 |
+
SegformerForSemanticSegmentation)
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
+
MODEL_PATH="./best_model_test/"
|
9 |
+
|
10 |
+
device = torch.device("cpu")
|
11 |
+
|
12 |
+
preprocessor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
|
13 |
+
model = SegformerForSemanticSegmentation.from_pretrained(MODEL_PATH)
|
14 |
+
model.eval()
|
15 |
+
|
16 |
+
|
17 |
+
def query_image(img):
|
18 |
+
"""Función para generar predicciones a la escala origina"""
|
19 |
+
inputs = preprocessor(images=img, return_tensors="pt")
|
20 |
+
with torch.no_grad():
|
21 |
+
preds = model(inputs.unsqueeze(0).to(device))["logits"]
|
22 |
+
#preds = model(image.unsqueeze(0).to(device))["logits"]
|
23 |
+
preds_upscale = upscale_logits_modified(preds, image.shape[2])
|
24 |
+
predict_label = torch.argmax(preds_upscale, dim=1).to(device)
|
25 |
+
return predict_label[0,:,:].detach().cpu().numpy()
|
26 |
+
|
27 |
+
|
28 |
+
def visualize_instance_seg_mask(mask):
|
29 |
+
return mask
|
30 |
+
|
31 |
+
demo = gr.Interface(
|
32 |
+
query_image,
|
33 |
+
inputs=[gr.Image()],
|
34 |
+
outputs="image",
|
35 |
+
title="SegFormer Model for rock glacier image segmentation"
|
36 |
+
)
|
37 |
+
|
38 |
+
demo.launch()
|