Spaces:
Running
Running
File size: 8,502 Bytes
0231e6a 54f7da0 d8f6559 1a5890e a1a9059 0231e6a 54f7da0 0231e6a a1a9059 460e2a9 d8f6559 460e2a9 d8f6559 0231e6a d8f6559 a1a9059 0231e6a d8f6559 8df0f23 0231e6a 8df0f23 460e2a9 d8f6559 0231e6a d8f6559 460e2a9 a1a9059 d8f6559 a1a9059 460e2a9 a1a9059 0231e6a d8f6559 0231e6a d8f6559 9e82682 d8f6559 0231e6a d8f6559 0231e6a d8f6559 460e2a9 d8f6559 a68eabb d8f6559 a68eabb d8f6559 a68eabb d8f6559 a68eabb d8f6559 a1a9059 ddd17ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import gradio as gr
import os
from typing import List
import logging
import urllib.request
from utils import model_name_mapping, urial_template, openai_base_request, chat_template, openai_chat_request
from constant import js_code_label, HEADER_MD, BASE_TO_ALIGNED, MODELS
from openai import OpenAI
import datetime
# add logging info to console
logging.basicConfig(level=logging.INFO)
URIAL_VERSION = "inst_1k_v4.help"
URIAL_URL = f"https://raw.githubusercontent.com/Re-Align/URIAL/main/urial_prompts/{URIAL_VERSION}.txt"
urial_prompt = urllib.request.urlopen(URIAL_URL).read().decode('utf-8')
urial_prompt = urial_prompt.replace("```", '"""') # new version of URIAL uses """ instead of ```
STOP_STRS = ['"""', '# Query:', '# Answer:']
addr_limit_counter = {}
LAST_UPDATE_TIME = datetime.datetime.now()
models = MODELS
# mega_hist = {
# "base": [],
# "aligned": []
# }
def respond(
message,
history: list[tuple[str, str]],
max_tokens,
temperature,
top_p,
rp,
model_name,
model_type,
api_key,
request:gr.Request
):
global STOP_STRS, urial_prompt, LAST_UPDATE_TIME, addr_limit_counter
assert model_type in ["base", "aligned"]
# if history:
# if model_type == "base":
# mega_hist["base"] = history
# else:
# mega_hist["aligned"] = history
if model_type == "base":
prompt = urial_template(urial_prompt, history, message)
else:
messages = chat_template(history, message)
# _model_name = "meta-llama/Llama-3-8b-hf"
_model_name = model_name_mapping(model_name)
if api_key and len(api_key) == 64:
api_key = api_key
else:
api_key = None
# headers = request.headers
# if already 24 hours passed, reset the counter
if datetime.datetime.now() - LAST_UPDATE_TIME > datetime.timedelta(days=1):
addr_limit_counter = {}
LAST_UPDATE_TIME = datetime.datetime.now()
host_addr = request.client.host
if host_addr not in addr_limit_counter:
addr_limit_counter[host_addr] = 0
if addr_limit_counter[host_addr] > 100:
return "You have reached the limit of 100 requests for today. Please use your own API key."
if model_type == "base":
infer_request = openai_base_request(prompt=prompt, model=_model_name,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
repetition_penalty=rp,
stop=STOP_STRS, api_key=api_key)
else:
infer_request = openai_chat_request(messages=messages, model=_model_name,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
repetition_penalty=rp,
stop=STOP_STRS, api_key=api_key)
addr_limit_counter[host_addr] += 1
logging.info(f"Requesting chat completion from OpenAI API with model {_model_name}")
logging.info(f"addr_limit_counter: {addr_limit_counter}; Last update time: {LAST_UPDATE_TIME};")
response = ""
for msg in infer_request:
# print(msg.choices[0].delta.keys())
if hasattr(msg.choices[0], "delta"):
# Note: 'ChoiceDelta' object may or may not be not subscriptable
if "content" in msg.choices[0].delta:
token = msg.choices[0].delta["content"]
else:
token = msg.choices[0].delta.content
else:
token = msg.choices[0].text
if model_type == "base":
should_stop = False
for _stop in STOP_STRS:
if _stop in response + token:
should_stop = True
break
if should_stop:
break
if token is None:
continue
response += token
if model_type == "base":
if response.endswith('\n"'):
response = response[:-1]
elif response.endswith('\n""'):
response = response[:-2]
yield history + [(message, response)]
# mega_hist[model_type].append((message, response))
# yield mega_hist[model_type]
def load_models(base_model_name):
print(f"base_model_name={base_model_name}")
out_box = [gr.Chatbot(), gr.Chatbot(), gr.Dropdown()]
out_box[0] = (gr.update(label=f"Chat with Base LLM: {base_model_name}"))
aligned_model_name = BASE_TO_ALIGNED[base_model_name]
out_box[1] = (gr.update(label=f"Chat with Aligned LLM: {aligned_model_name}"))
out_box[2] = (gr.update(value=aligned_model_name, interactive=False))
return out_box[0], out_box[1], out_box[2]
def clear_fn():
# mega_hist["base"] = []
# mega_hist["aligned"] = []
return None, None, None
with gr.Blocks(gr.themes.Soft(), js=js_code_label) as demo:
api_key = gr.Textbox(label="🔑 APIKey", placeholder="Enter your Together/Hyperbolic API Key. Leave it blank to use our key with limited usage.", type="password", elem_id="api_key", visible=False)
gr.Markdown(HEADER_MD)
with gr.Row():
chat_a = gr.Chatbot(height=500, label="Chat with Base LLMs via URIAL")
chat_b = gr.Chatbot(height=500, label="Chat with Aligned LLMs")
with gr.Group():
with gr.Row():
with gr.Column(scale=1.5):
message = gr.Textbox(label="Prompt", placeholder="Enter your message here")
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
left_model_choice = gr.Dropdown(label="Base Model", choices=models, interactive=True)
right_model_choice = gr.Textbox(label="Aligned Model", placeholder="xxx", visible=True)
with gr.Row():
btn = gr.Button("🚀 Chat")
# gr.Markdown("---")
with gr.Row():
stop_btn = gr.Button("⏸️ Stop")
clear_btn = gr.Button("🔁 Clear")
with gr.Row():
gr.Markdown(">> - We thank for the support of Llama-3.1-405B from [Hyperbolic AI](https://hyperbolic.xyz/). ")
with gr.Column(scale=1):
with gr.Accordion("⚙️ Params for **Base** LLM", open=True):
with gr.Row():
max_tokens_1 = gr.Slider(label="Max tokens", value=256, minimum=0, maximum=2048, step=16, interactive=True, visible=True)
temperature_1 = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
with gr.Row():
top_p_1 = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rp_1 = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.1)
with gr.Accordion("⚙️ Params for **Aligned** LLM", open=True):
with gr.Row():
max_tokens_2 = gr.Slider(label="Max tokens", value=256, minimum=0, maximum=2048, step=16, interactive=True, visible=True)
temperature_2 = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
with gr.Row():
top_p_2 = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rp_2 = gr.Slider(label="Repetition Penalty", step=0.1, minimum=0.1, maximum=2.0, value=1.0)
left_model_choice.change(load_models, [left_model_choice], [chat_a, chat_b, right_model_choice])
model_type_left = gr.Textbox(visible=False, value="base")
model_type_right = gr.Textbox(visible=False, value="aligned")
go1 = btn.click(respond, [message, chat_a, max_tokens_1, temperature_1, top_p_1, rp_1, left_model_choice, model_type_left, api_key], chat_a)
go2 = btn.click(respond, [message, chat_b, max_tokens_2, temperature_2, top_p_2, rp_2, right_model_choice, model_type_right, api_key], chat_b)
stop_btn.click(None, None, None, cancels=[go1, go2])
clear_btn.click(clear_fn, None, [message, chat_a, chat_b])
if __name__ == "__main__":
demo.launch(show_api=False) |